
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/347697652

Java Ranger: statically summarizing regions for efficient symbolic execution of

Java

Conference Paper · November 2020

DOI: 10.1145/3368089.3409734

CITATIONS

44
READS

385

5 authors, including:

Vaibhav Sharma

University of Minnesota Twin Cities

21 PUBLICATIONS 208 CITATIONS

SEE PROFILE

Soha Hussein

University of Minnesota Twin Cities

11 PUBLICATIONS 84 CITATIONS

SEE PROFILE

Michael William Whalen

Amazon

120 PUBLICATIONS 2,827 CITATIONS

SEE PROFILE

Stephen McCamant

University of Minnesota Twin Cities

75 PUBLICATIONS 4,124 CITATIONS

SEE PROFILE

All content following this page was uploaded by Vaibhav Sharma on 28 December 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/347697652_Java_Ranger_statically_summarizing_regions_for_efficient_symbolic_execution_of_Java?enrichId=rgreq-38bfdf16a726f84fc062c73a28f88f82-XXX&enrichSource=Y292ZXJQYWdlOzM0NzY5NzY1MjtBUzo5NzM3ODc5NDQyMTA0MzJAMTYwOTE4MDU0NjI4NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/347697652_Java_Ranger_statically_summarizing_regions_for_efficient_symbolic_execution_of_Java?enrichId=rgreq-38bfdf16a726f84fc062c73a28f88f82-XXX&enrichSource=Y292ZXJQYWdlOzM0NzY5NzY1MjtBUzo5NzM3ODc5NDQyMTA0MzJAMTYwOTE4MDU0NjI4NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-38bfdf16a726f84fc062c73a28f88f82-XXX&enrichSource=Y292ZXJQYWdlOzM0NzY5NzY1MjtBUzo5NzM3ODc5NDQyMTA0MzJAMTYwOTE4MDU0NjI4NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vaibhav-Sharma-37?enrichId=rgreq-38bfdf16a726f84fc062c73a28f88f82-XXX&enrichSource=Y292ZXJQYWdlOzM0NzY5NzY1MjtBUzo5NzM3ODc5NDQyMTA0MzJAMTYwOTE4MDU0NjI4NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vaibhav-Sharma-37?enrichId=rgreq-38bfdf16a726f84fc062c73a28f88f82-XXX&enrichSource=Y292ZXJQYWdlOzM0NzY5NzY1MjtBUzo5NzM3ODc5NDQyMTA0MzJAMTYwOTE4MDU0NjI4NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Minnesota_Twin_Cities2?enrichId=rgreq-38bfdf16a726f84fc062c73a28f88f82-XXX&enrichSource=Y292ZXJQYWdlOzM0NzY5NzY1MjtBUzo5NzM3ODc5NDQyMTA0MzJAMTYwOTE4MDU0NjI4NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vaibhav-Sharma-37?enrichId=rgreq-38bfdf16a726f84fc062c73a28f88f82-XXX&enrichSource=Y292ZXJQYWdlOzM0NzY5NzY1MjtBUzo5NzM3ODc5NDQyMTA0MzJAMTYwOTE4MDU0NjI4NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Soha-Hussein-2?enrichId=rgreq-38bfdf16a726f84fc062c73a28f88f82-XXX&enrichSource=Y292ZXJQYWdlOzM0NzY5NzY1MjtBUzo5NzM3ODc5NDQyMTA0MzJAMTYwOTE4MDU0NjI4NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Soha-Hussein-2?enrichId=rgreq-38bfdf16a726f84fc062c73a28f88f82-XXX&enrichSource=Y292ZXJQYWdlOzM0NzY5NzY1MjtBUzo5NzM3ODc5NDQyMTA0MzJAMTYwOTE4MDU0NjI4NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Minnesota_Twin_Cities2?enrichId=rgreq-38bfdf16a726f84fc062c73a28f88f82-XXX&enrichSource=Y292ZXJQYWdlOzM0NzY5NzY1MjtBUzo5NzM3ODc5NDQyMTA0MzJAMTYwOTE4MDU0NjI4NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Soha-Hussein-2?enrichId=rgreq-38bfdf16a726f84fc062c73a28f88f82-XXX&enrichSource=Y292ZXJQYWdlOzM0NzY5NzY1MjtBUzo5NzM3ODc5NDQyMTA0MzJAMTYwOTE4MDU0NjI4NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michael-Whalen-3?enrichId=rgreq-38bfdf16a726f84fc062c73a28f88f82-XXX&enrichSource=Y292ZXJQYWdlOzM0NzY5NzY1MjtBUzo5NzM3ODc5NDQyMTA0MzJAMTYwOTE4MDU0NjI4NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michael-Whalen-3?enrichId=rgreq-38bfdf16a726f84fc062c73a28f88f82-XXX&enrichSource=Y292ZXJQYWdlOzM0NzY5NzY1MjtBUzo5NzM3ODc5NDQyMTA0MzJAMTYwOTE4MDU0NjI4NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Amazon?enrichId=rgreq-38bfdf16a726f84fc062c73a28f88f82-XXX&enrichSource=Y292ZXJQYWdlOzM0NzY5NzY1MjtBUzo5NzM3ODc5NDQyMTA0MzJAMTYwOTE4MDU0NjI4NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michael-Whalen-3?enrichId=rgreq-38bfdf16a726f84fc062c73a28f88f82-XXX&enrichSource=Y292ZXJQYWdlOzM0NzY5NzY1MjtBUzo5NzM3ODc5NDQyMTA0MzJAMTYwOTE4MDU0NjI4NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephen-Mccamant?enrichId=rgreq-38bfdf16a726f84fc062c73a28f88f82-XXX&enrichSource=Y292ZXJQYWdlOzM0NzY5NzY1MjtBUzo5NzM3ODc5NDQyMTA0MzJAMTYwOTE4MDU0NjI4NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephen-Mccamant?enrichId=rgreq-38bfdf16a726f84fc062c73a28f88f82-XXX&enrichSource=Y292ZXJQYWdlOzM0NzY5NzY1MjtBUzo5NzM3ODc5NDQyMTA0MzJAMTYwOTE4MDU0NjI4NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Minnesota_Twin_Cities2?enrichId=rgreq-38bfdf16a726f84fc062c73a28f88f82-XXX&enrichSource=Y292ZXJQYWdlOzM0NzY5NzY1MjtBUzo5NzM3ODc5NDQyMTA0MzJAMTYwOTE4MDU0NjI4NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephen-Mccamant?enrichId=rgreq-38bfdf16a726f84fc062c73a28f88f82-XXX&enrichSource=Y292ZXJQYWdlOzM0NzY5NzY1MjtBUzo5NzM3ODc5NDQyMTA0MzJAMTYwOTE4MDU0NjI4NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vaibhav-Sharma-37?enrichId=rgreq-38bfdf16a726f84fc062c73a28f88f82-XXX&enrichSource=Y292ZXJQYWdlOzM0NzY5NzY1MjtBUzo5NzM3ODc5NDQyMTA0MzJAMTYwOTE4MDU0NjI4NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Java Ranger: Statically Summarizing Regions for Efficient
Symbolic Execution of Java

Vaibhav Sharma∗

vaibhav@umn.edu
University of Minnesota
Minneapolis, MN, USA

Soha Hussein∗

soha@umn.edu
University of Minnesota
Minneapolis, MN, USA

soha.hussein@cis.asu.edu.eg
University of Ain Shams

Cairo, Egypt

Michael W. Whalen
mwwhalen@umn.edu
University of Minnesota
Minneapolis, MN, USA

Stephen McCamant
mccamant@cs.umn.edu
University of Minnesota
Minneapolis, MN, USA

Willem Visser
wvisser@cs.sun.ac.za
Stellenbosch University

Stellenbosch, South Africa

ABSTRACT

Merging execution paths is a powerful technique for reducing path

explosion in symbolic execution. One approach, introduced and

dubbed łveritestingž by Avgerinos et al., works by translating a

bounded control flow region into a single constraint. This approach

is a convenient way to achieve path merging as a modification to a

pre-existing single-path symbolic execution engine. Previous work

evaluated this approach for symbolic execution of binary code,

but different design considerations apply when building tools for

other languages. In this paper, we extend the previous approach

for symbolic execution of Java.

Because Java code typically contains many small dynamically

dispatched methods, it is important to include them in multi-path

regions; we introduce dynamic inlining of method-regions to do so

modularly. Java’s typed memory structure is very different from

the binary representation, but we show how the idea of static sin-

gle assignment (SSA) form can be applied to object references to

statically account for aliasing.

We have implemented our algorithms in Java Ranger, an exten-

sion to the widely used Symbolic Pathfinder tool. In a set of nine

benchmarks, Java Ranger reduces the running time and number

of execution paths by a total of 38% and 71% respectively as com-

pared to SPF. Our results are a significant improvement over the

performance of JBMC, a recently released verification tool for Java

bytecode. We also participated in a static verification competition

at a top theory conference where other participants included state-

of-the-art Java verifiers. JR won first place in the competition’s Java

verification track.

∗These authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3409734

CCS CONCEPTS

· Theory of computation→ Program analysis.

KEYWORDS

symbolic execution, veritesting, path-merging

ACM Reference Format:

Vaibhav Sharma, Soha Hussein, Michael W. Whalen, Stephen McCamant,

and Willem Visser. 2020. Java Ranger: Statically Summarizing Regions for

Efficient Symbolic Execution of Java. In Proceedings of the 28th ACM Joint

European Software Engineering Conference and Symposium on the Founda-

tions of Software Engineering (ESEC/FSE ’20), November 8ś13, 2020, Virtual

Event, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

3368089.3409734

1 INTRODUCTION

Symbolic execution is a popular analysis technique that performs

non-standard execution of a program: data operations generate

formulas over inputs, and branch constraints along an execution

path are combined into a predicate. Originally developed in the

1970s [19], [10], symbolic execution is a convenient building block

for program analysis, since arbitrary query predicates can be com-

bined with the logical program representation, and solutions to

these constraints are program inputs illustrating the queried be-

havior. Some of the applications of symbolic execution include test

generation [15, 26], equivalence checking [25, 28], vulnerability

finding [31, 32], program repair [22], invariant discovery [1], and

protocol correctness checking [33]. Symbolic execution tools are

available for many languages, including CREST [7] for C source

code, KLEE [8] for C/C++ via LLVM, JDart [21] and Symbolic

PathFinder (SPF) [24] for Java, and S2E [9], FuzzBALL [4], and

angr [31] for binary code.

Although symbolic analysis is a popular technique, scalability is a

substantial challenge for many applications. In particular, symbolic

execution can suffer from a path explosion: complex software has

exponentially many execution paths, and baseline techniques that

explore one path at a time are unable to cover all paths. Dynamic

state merging [16, 20] provides one way to alleviate scalability

challenges by opportunistically merging execution paths. Avoiding

123

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3368089.3409734
https://doi.org/10.1145/3368089.3409734
https://doi.org/10.1145/3368089.3409734

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Vaibhav Sharma, Soha Hussein, Michael W. Whalen, Stephen McCamant, and Willem Visser

even a single branch point can provide a multiplicative savings

in the number of execution paths, though at the potential cost of

making symbolic state representations more complex.

Veritesting [3] is another technique that can dramatically im-

prove the performance of symbolic execution by effectively merg-

ing paths. Rather than explicitly merging state representations,

veritesting identifies arbitrary fragments of code and encodes it

as a disjunctive predicate for symbolic execution. This encoding

allows many paths to be collapsed into a single path.

In previous work [3], constructing a bounded static representa-

tion of code fragments was shown to allow symbolic execution the

ability to find more bugs, and achieve more node and path coverage,

when implemented at the X86 binary level for compiled C programs.

This motivates us to investigate the benefit of bounded static rep-

resentation of bytecode fragments for the symbolic execution of

Java programs. There are substantial differences between compiled

Java programs and C programs. In C programs, most functions

are statically dispatched and exceptions do not occur, allowing C

compilers to inline code and create relatively large code fragments

without non-local jumps. In Java programs, most functions are

dynamically dispatched, methods tend to be small, and the com-

piler assumes an "open-world" so most functions are not inlined. In

addition, many, if not most, Java bytecodes can throw exceptions,

leading to many small, dynamically dispatched fragments of code

with many non-local control jumps. In a naive implementation,

such non-local jumps reduce the size of the path-merged code that

can be created and increase the branching factor for exploration,

leading to poor performance. This makes Java more challenging

for creating bounded static representations.

In this paper, we present Java Ranger, an extension of Symbolic

PathFinder. Java Ranger operates by identifying particular forms

of bytecode fragments that we call a region. A region can be one

of two types: a Multi-Path Region, which corresponds to the Java

bytecode fragment of an if-statement, and a Method Region, which

corresponds to Java bytecode that spans the definition of a method.

Java Ranger then utilizes dynamic information from Dynamic Sym-

bolic Execution (DSE) environment such as stack slot and heap

values, and later uses them in a series of transformations to per-

form path-merging. Java Ranger’s transformations are designed to

transform features of the Java language to a solver constraint.

In our experiments, we demonstrate exponential speedups on

benchmarks (in general, themore paths containedwithin a program,

the larger the speedup) over the unmodified Java SPF tool using

this approach.

We make the following contributions in this paper:

(1) We propose Dynamic Method Region Inlining: this allows us

to construct summaries for multi-path regions containing

dynamically dispatched method calls, once types are known.

(2) We propose a technique named Single-Path Cases for splitting

regions into exceptional and non-exceptional outcomes, and

use Dynamic Symbolic Execution for the exceptional cases.

(3) We propose Early-Returns Summarization to collapse multi-

ple returns into a disjunctive-conditional returned-expressions.

1 List<Integer> list = new ArrayList<>(7);

2 //put 7 symbolic int into list

3 int[] wrdStartIndArr = new int[(list.size() / 2)];

4 for (int j = 0; j < wrdStartIndArr.length; j++)

5 wrdStartIndArr[j] = -1;

6 int wordCount = 0, element = 0, i = 0;

7 boolean inWord = false, done = false;

8 if (list.size() > 0) {

9 while (i < list.size() && !done) {

10 element = list.get(i);

11 if (element == -1) {

12 done = true;

13 } else {

14 //list.get(i) returns sym. int

15 element = list.get(i);

16 if (element == 0) {

17 inWord = false;

18 } else if (!inWord) {

19 wrdStartIndArr[wordCount] = i;

20 ++wordCount;

21 inWord = true; } }

22 ++i; } }

List<Integer>.

get(i)

ArrayList<Integer>.

get(i)

ArrayList<E>.

rangeCheck(i)

ArrayList<E>.

elementData(i)

ArrayList<E>.

elementData[i]

Integer.

intValue()

Integer.

value

(1)

(1b)

(2)

(1a)

Figure 1: An example where Java Ranger summarizes two

multi-path regions

1.1 Motivating Example

Consider the example shown in Figure 1. The code computes the

number of words in a list and stores the starting index of each word

in wrdStartIndArr. The list variable refers to an ArrayList of

7 Integer objects, each of which have an unconstrained symbolic

integer as a field. The size of wrdStartIndArr is set to half the size

of list, to account for the maximum possible words that can occur

in list if all words are one character long (line 3). All elements in

fstWrdIndexArr are initialized to −1 (lines 4-5). In this example,

the concrete value 0 acts as a delimiter for words and the value -1

acts as string terminator. Two conditions cause execution to exit

the while loop, (1) if if all elements in the list have been processed

or (2) if a string terminator (-1) is found.

This code has a bug. Consider the case when the list has the

following 7 values: {1,0,1,0,1,0,1}. In this case, there are 4

words, where each word is of size 1 character and where 0, 2, 4,

and 6 are the starting indices of each word. But, the allocated size

of wrdStartIndArr is 3 elements since we performed integer di-

vision on line 3 (7/2 = 3). This incorrect allocation causes an

ArrayOutOfBoundsException when trying to store the first index

of the 4th word in wrdStartIndArr at line 19. We ran this code

symbolically with the depth-first search heuristic with a dynamic

symbolic executor (Symbolic PathFinder) and found that it explored

173 execution paths before finding this bug. This number of ex-

plored execution paths depends on the number of symbolic inputs (7

in this example) when exploring with Symbolic PathFinder. Java

Ranger however, can find this bug after exploring only one execu-

tion path, regardless of the number of symbolic inputs. Java Ranger

explores two kinds of outcomes through path-merging: (a) the non-

exceptional outcome which includes within-bounds array access

, and (b) an exceptional outcome, which explores, in this case the

ArrayOutOfBoundsException to find the bug. Java Ranger is able

to achieve this reduction in execution paths by merging the paths

arising out of the if-branch in line 11 through 21 and exploring all

non-exceptional outcomes in a single execution path.

Path-merging of this simple region is not straightforward.

The call to list.get(int) at the source level results in the

following sequence of method calls (Figure 1): (1) It calls

ArrayList<Integer>.get(int)which internally does two things,

124

Java Ranger: Statically Summarizing Regions for Efficient Symbolic Execution of Java ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

BB40

if (x57 != 0)

BB42

if (x67 != 0)

BB43

 x39[x64] = x66

BB44

x58 = w64 + 1

BB41

goto BB40

BB45

x59 = phi x64, x64, x64, x58

x61 = phi x67, 0, x67, 1

x62 = phi 1, x68, x68, x68

x63 = x66 + 1

BB35

if (x52 != -1)

BB37

x54 = invoke <List, get(I)Object> x9,x66

BB38

x55 = checkcast <Integer> x54

BB39

x57 = invoke < Integer, intValue()I> x55

BB36

goto BB40

Figure 2: A subgraph of the CFG representing the Region in

dashed box in Figure 1, where BB35 and BB45 is the entry

and exit blocks of the subgraph, respectively.

(a) It checks if the index argument accesses a value within bounds

of the ArrayList by calling ArrayList<E>.rangeCheck(int). If

this access is not within bounds, it throws an exception. And (b) It

calls ArrayList<E>.elementData(int) to access an internal ar-

ray named elementData and get the entry at position i. This call

results in an object of class Integer being returned. (2) It calls

Integer.intValue() on the object returned by the previous step.

This call internally accesses the value field of the Integer to return

the int primitive value of this object.

The method to be inlined depends on the dynamic type of the ob-

ject reference for the invoked method. In this example, the dynamic

type of list is an ArrayList, whereas it is declared static type is

List. Path-merging requires not only inlining the right method but

also accounting for the possibility of an exception being raised by

ArrayList<E>.rangeCheck(i).

1.2 Java Ranger Overview

Java Ranger operates on top of DSE and attempts to merge paths

by creating a Region Constraint, a disjunctive formula describing

the behavior of the region. It integrates with DSE by utilizing three

main features of DSE: (1) Path Condition (𝑃𝐶), which is a condition

on the input symbols such that if a path is feasible its path condition

is satisfiable. Java Ranger adds the constraint describing themerged

region to the 𝑃𝐶 . (2) Program Counter (𝑝𝑐), which points to the

instruction to be executed. Java Ranger changes the 𝑝𝑐 to skip

symbolic execution of a successfully merged region or to direct

DSE to execute unmerged paths. (3) Runtime/Instantiation time

information of local variables on the stack and the heap. Java Ranger

utilizes this information to construct a region constraint.

To do pathmerging, Java Ranger intercepts any symbolic branch-

ing instruction during DSE, and attempts to recover the correspond-

ing if-then-else statement structure by recognizing instructions that

belongs to its "then" or "else" side. The recovered statement is rep-

resented in Java Ranger’s Intermediate Representation (IR) which

we call a static statement. For example, Listing 1 in Figure 3 shows

the recovered static statement of the bytecode corresponding to the

code region between lines 11-21 in Figure 1. We call this process

Statement Recovery and it is part of the Static phase, described in

Section 3.2. The input to the statement recovery is a Control Flow

Graph (CFG) of the corresponding region. Java Ranger uses Wala

[17] to construct the CFG of the bytecode region. Figure 2 shows

the CFG of the multi-path region in lines 11-21.

Given the static statement from the above step, Java Ranger then

tries to find instantiation/runtime information in DSE to concretize

values of variables and references used in the static statement.

We call this phase the Instantiation Phase and it consists of nine

instantiation-time transformations described in Section 3.4. The

output of each of these transformations is a more refined, rewritten

version of the static statement in Java Ranger IR. We call this output

instantiated statement. For example, Listing 2 in Figure 3 shows

the instantiated statement resulting from the Substitution transfor-

mation with runtime information substituted from DSE, e.g., 𝑥9 is

substituted with the instantiation time object reference 375 of List

obtained by reading a stack slot in the DSE environment.

The goal of the instantiation phase is to generate an instantiated

statement that can be converted into a region constraint which can

be conjuncted with the path condition of the DSE. Listing 3 shows

the final form of an instantiated statement just before translating

it to a region constraint. We call this form of instantiated state-

ment linearized since it has no branching structure in it anymore

(compare it with Listing 1 and Listing 2). Using the linearized in-

stantiated statement, Java Ranger generates region constraint and

conjuncts it with the path condition of the DSE. Java Ranger also

re-directs the DSE to execute the instruction that follows the re-

covered if-statement. This constitutes an exit point for Java Ranger.

An Exit Point is a program location at which JR transfers execu-

tion back to DSE. For example, after generating a region constraint

from Listing 3 that represents the merged multi-path region in-

side the dashed box in Figure 1, the execution of DSE proceeds

from the instruction that is following 𝐵𝐵45 in Figure 2. Generally,

there are three kinds of exit points: a program location that corre-

sponds to the conditional branch’s immediate post-dominator, a

program location that performs a non-local jump in the form of a

return instruction, and a set of program locations that Java Ranger

does not merge and requires DSE exploration. We refer to these

three exit points as a non-exceptional and non-returning exit point

(NENR), a returning exit point (RE), and single-path exit point (SP)

respectively in the rest of this work.

2 RELATED WORK

Path explosion hinders scalable use of symbolic execution, so an ap-

pealing direction for optimization is to combine the representations

of similar execution paths, which we refer to as path merging. If a

symbolic execution tool maintains objects representing multiple

execution states, a natural approach is to merge these states, espe-

cially ones with the same control-flow location. Hansen et al. [16]

and Kuznetsov et al. [20] are representative examples of this ap-

proach. A similar example can be found in the large-block encoding

125

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Vaibhav Sharma, Soha Hussein, Michael W. Whalen, Stephen McCamant, and Willem Visser

if (!(x52!=-1)) then { skip; }

else {

x54 := invoke(List.get(I)Object, x9, x66);

x55 := checkcast(Integer, x54);

x57 := invoke(Integer.intValue()I, x55);

if (x57 != 0) then {

if (!(x67 != 0)) then {

x39[x64] := x66;

x58 := (x64 + 1);

} else { skip; }

} else { skip; }}

x59:= 𝛾
(x52!=-1,𝛾(x57!=0,𝛾(!(x67!=0),x58,x64),x64),x64);

x61:= 𝛾(x52!=-1,𝛾(x57!=0,𝛾(!(x67!=0),1,x67),0),x67);
x62 := 𝛾

(x52!=-1,𝛾(x57!=0,𝛾(!(x67!=0),x68,x68),x68),1);

Listing 1: Static Statement

if (!(a1!=-1)) then { skip; }

else {

x54 := invoke(List.get(I)Object, 375,

0);

x55 := checkcast(Integer, x54);

x57 := invoke(Integer.intValue()I, x55);

if (x57 != 0) then {

if (!(0 != 0)) then {

399[0] := 0;

x58 := (0 + 1);

} else { skip; }

} else { skip; }}

x59:=𝛾(a1!=-1,𝛾(x57!=0,𝛾(!(0!=0),x58,0),0),0);
x61:=𝛾(a1!=-1,𝛾(x57!=0,𝛾(!(0!=0),1,0),0),0);
x62:=𝛾(a1!=-1,𝛾(x57!=0,𝛾(!(0!=0),0,0),0),1);

Listing 2: Instantiated Statement

r399[0]_5 := 𝛾(a1!=0, 0, -1);

r399[0]_8 := 𝛾(a1!=-1, r399[0]_5, -1);

x59_1 := 𝛾(a1!=-1, 𝛾(a1!=0, 1, 0), 0);

x61_1 := 𝛾(a1!=-1, 𝛾(a1!=0, 1, 0), 0);

x62_1 := 𝛾(a1!=-1, 0, 1);

Listing 3: Linearized Instantiated Statement

Figure 3: Java Ranger’s High Level Overview. Blue variables correspond to inputs to the region. Red variables correspond to

outputs from the region. x52, x9, x66, x67, x39, and x64 refer to the input of element, list, i, inWord, wrdStartIndArr,

and wordCount respectively. Similarly, r399[0]_8, x59, x61, and x62 refer to the outputs of wrdStartIndArr[0], wordCount,

inWord, and done respectively.

approach [6] by Beyer et al. for model checking C code. Sen et al.’s

MultiSE [27] achieves similar benefits for symbolic execution as

part of a different tool architecture.

Another approach to achieve path merging is to statically sum-

marize regions that contain branching control flow. This approach

was proposed by Avgerinos et al. [3] and dubbed łveritesting.ž A

veritesting-style technique is a convenient way to add path merging

to a symbolic execution system that maintains only one execution

state, like SPF. Avgerinos et al. implemented their veritesting sys-

tem MergePoint to apply binary-level symbolic execution for bug

finding. They found that veritesting provided a dramatic perfor-

mance improvement, allowing their system to find more bugs and

have better coverage.

The way that Java Ranger and similar tools statically convert

code regions into formulas is similar to techniques used in veri-

fication. In the limit where all relevant code in a program can be

summarized, such as with WBS and TCAS in Section 4, Java Ranger

performs similarly to a bounded symbolic model checker for Java.

SPF and Java Ranger build on Java Pathfinder (JPF) [36], which is

widely used for explicit-state model checking of Java. The most

closely related Java model checking tool is JBMC [11], which shares

infrastructure with the C tool CBMC. JBMC performs symbolic

bounded model checking of Java code, transforming code and a

supported subset of the standard library into SMT or SAT formulas

that represent all possible execution paths. The process by which

JBMC transforms its internal code representation into SMT formu-

las is similar to how Java Ranger constructs static regions. However,

the dynamic dispatch aspects of Java make creating entirely static

representations expensive. We believe that our approach can yield

simpler SMT formulas in many cases where it is difficult to com-

pletely statically summarize program behavior, and can be used in

cases when software is too large and/or complex to be explored

completely.

Many other enhancements to symbolic execution have been pro-

posed to improve its performance, including caching and simplify-

ing constraints, summarizing repetitive behavior in loops, heuristic

guidance towards interesting code, pruning paths that are repetitive

or unproductive, and many domain-specific ideas. A recent survey

by Baldoni et. al. [5] provides pointers into the large literature. One

approach that is most related to our multi-path regions that have

method invocation, is the function-level compositional approach

called SMART proposed by Godefroid [14]. SMART differs in being

based on single-path symbolic execution instead of static analysis,

and targeting C it does not address dynamic dispatch.

3 TECHNIQUE

Conceptually Java Ranger has two main phases, a static phase, and a

instantiation phase. The static phase consists of two transformations

and the instantiation phase consists of nine transformations. Note

that Java Ranger’s default configuration chooses to perform the

transformations of both phases dynamically during execution. More

concretely the static phase is performed on-the-fly when needed

rather than prior to symbolic execution to avoid the expense of

creating a static statement for unexecuted methods, classes, and

packages. The distinction then between the two phases refers to the

dependency of the transformation on dynamic or static informa-

tion rather than when they are executed. The transformations are

discussed in more detail in Sections 3.2 - 3.4, but are summarized

below.

The two transformations of the static phase are explained as

follows (more details in Section 3.2):

-IR Statement Recovery: To more easily implement the Java

Ranger transformations, we first convert the control flow graph

representation into an internal representation (IR) in the IR

Statement recovery transformation.

-Early-Returns Summarization: Multi-path and method regions can

sometimes have more than one return-instruction. DSE needs to

explore each return possibility in a separate execution path which

can increase the total number of execution paths explored by DSE.

In this transformation, Java Ranger collapses return paths into a

single return path that can explore all return possibilities.

126

Java Ranger: Statically Summarizing Regions for Efficient Symbolic Execution of Java ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

⟨𝑣𝑎𝑙 𝑣⟩ ::= 𝐶 | 𝑍 | 𝐵 ⟨𝑣𝑎𝑟 𝑥⟩ ::= .. | 𝐼𝑑𝑠 | 𝐼𝑑𝑠𝑟

⟨𝑟𝑒 𝑓 𝑟 ⟩ ::= 𝐼𝑑 ⟨𝑓 𝑖𝑒𝑙𝑑⟩ ::= 𝐼𝑑 ⟨𝑐𝑙𝑎𝑠𝑠 𝑐⟩ ::= 𝐼𝑑

⟨𝑠𝑖𝑔 𝑔⟩ ::= ... ⟨𝑒𝑥𝑝 𝑒⟩ ::= ... | 𝛾 (𝑒1, 𝑒2, 𝑒3)

⟨𝑠𝑡𝑚𝑡 𝑠⟩ ::= 𝑥 := 𝑒 | 𝑠1 ; 𝑠2 | skip | if 𝑒 then 𝑠1 else 𝑠2

| 𝑥 := invoke(𝑔, 𝑟,−→𝑒) | putfield(𝑟, 𝑓 , 𝑒) | getfield(𝑟, 𝑓 , 𝑒)

| return 𝑒 | 𝑥 := 𝑟 [𝑒] | 𝑟 [𝑒1] := 𝑒2 | new (𝑐,−→𝑒) | throw 𝑒

Figure 4: Main Constructs in Ranger IR

Briefly, the nine instantiation phase transformations are as fol-

lows:

-Alpha-Renaming: Name clashes of symbolic variables on the 𝑃𝐶 can

result in unsound behaviour. In this transformation, Java Ranger

avoids this problem by using unique names for newly encountered

symbolic variables. For example in listing 3 variables are appended

with _1 to distinguish their names.

-Input Substitution: Java Ranger needs to bind inputs of the static

statement to their runtime values to preserve soundness. It does

this by collecting and substituting runtime information from DSE

into the input of the static statement.

-Method Region Inlining and Field and Array Reference GSA Cre-

ation: These transformations support method invocation as well

as field and array accesses. The former inlines method regions and

the latter represents field and array accesses in a Gated-Single-

Assignment(GSA) form [23, 34].

-Simplification: This transformation pushes concrete values to subse-

quent variables definitions using constant propagation, copy prop-

agation, and constant folding [2].

-Single-Path Cases: Java Ranger avoids merging certain types of

statements (object creation and exceptions) because of limitations

that Java Ranger has inherited. If Java Ranger had to abort all code

regions that contains these two types of statements because it is

unable to merge them, then it will miss many useful path-merging

instances. This transformation is Java Ranger’s way of partially

merging paths, while directing SPF to execute unmerged ones.

-Linearization and Green: Even after removing all Java-specific state-

ments above, a potential Java Ranger’s statement is still not reduced

enough to a solver constraint. These two transformations remove

if-statement structures and generate a region constraint.

In the rest of this section we introduce JR’s IR grammar, discuss

JR’s static phase, present Java Ranger’s instantiation algorithm, and

finally discuss Java Ranger’s instantiation time transformations.

3.1 Java Ranger IR Grammar

Figure 4 shows the grammar of the IR for JR. Values are charac-

ters, integers, and booleans. In addition to program variables and

symbolic variables 𝐼𝑑𝑠 , JR uses 𝐼𝑑𝑠𝑟 to capture return-symbolic vari-

ables. Java Ranger IR identifies references 𝑟𝑒 𝑓 , fields 𝑓 𝑖𝑒𝑙𝑑 , classes

𝑐𝑙𝑎𝑠𝑠 , and method signatures 𝑠𝑖𝑔.

Java Ranger extends usual expressions with a 𝛾-expression (seen

in Listing 1): 𝛾 (𝑒1, 𝑒2, 𝑒2), which describes the GSA form, where 𝑒1
is the condition and 𝑒2 and 𝑒3 are the returned expressions if the

condition was evaluated to true or false.

Statements include assignment, composition, skip, if, method

invocation: x:= invoke(g,r,−→𝑒) , return statement: return 𝑒 , put field

statement: putfield(𝑟, 𝑓 , 𝑒) to put the value of expression 𝑒 in the

field 𝑓 of reference 𝑟 , get field statement: 𝑥 := getfield(𝑟, 𝑓), array

load: 𝑥 := r[𝑒] and array store: r[𝑒1] := 𝑒2, object creation: new(c,−→𝑒)

where 𝑐 is the class type and −→𝑒 is the constructor parameters, and

finally throw statement to represent an exception being thrown in

the JR IR.

3.2 Static Phase

The goal of the static phase is to identify multi-path regions that can

be summarized and to create an intermediate representation (IR)

for the region while collapsing return-statements. Listing 1 shows

the output of the static phase. There are 2 main transformations in

this phase:

1) IR Statement Recovery

In this transformation, multi-path regions and method regions

are identified by first recovering their corresponding CFG using

Wala. Next, the CFG is converted to the Java Ranger’s intermediate

representation (IR). Java Ranger distinguishes two types of regions.

(1) Multi-Path Region: this corresponds to the Java bytecode of an

acyclic subgraph of the control-flow graph (CFG). It begins from

the basic block containing a conditional branch and ends at this

basic block’s immediate post-dominator. A node𝑑 immediately post

dominates a node 𝑛 if every path from the 𝑛 node to exit node must

go through 𝑑 and 𝑑 does not strictly dominate any other node that

strictly dominates 𝑛. For example, the immediate post-dominator

of BB40 is BB45, while the immediate post-dominator of BB43 is

BB44.

Since Java allows if-statements to be nested, a multi-path re-

gion may also contain other multi-path regions. For example, the

sub-graphs from BB30-BB45, and BB35-BB45 in Figure 2 are both

recognized as two multi-path regions. The reason for recognizing

both multi-path regions is that, while it may not be possible to

successfully path merge the larger multi-path region, the inner

region could be merged. (2)Method Region: this corresponds to Java

bytecode that spans the definition of a method. For example, the

larger CFG (not shown), that contains the CFG in Figure 2, includ-

ing method entry and exit blocks constitutes a method region. The

recovered Java Ranger IR captures the multi-path or method region

in GSA form.

The algorithms of the static statement recovery are similar to

those used for decompilation [39]. Starting from an initial basic

block in a control-flow graph, the algorithm first finds the immedi-

ate post-dominator of all normal control paths, that is, paths that

do not end in an exception or return instruction. It then looks for

nested self-contained subgraphs.

If, for any subgraph, the post-dominator is also a predecessor of

the node, we consider it a loop and discard the region. For example,

in Figure 1, the subgraph of the CFG that spans the entire while-loop

from line 9-22, is discarded. On the other hand, the subgraph of the

CFG that corresponds to the enclosed if-statement that spans lines

11-21 is going to be created, because the immediate post-dominator

of BB30 is BB40 and it is not its predecessor (Figure 2).

During this process, local inputs, where runtime-values are going

to be used, and outputs, where the result of path merging is going

127

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Vaibhav Sharma, Soha Hussein, Michael W. Whalen, Stephen McCamant, and Willem Visser

to be written to, of the static statement are identified. In particular,

given a JR statement, the first use of a stack slot is deemed a local

input and the last def of a stack slot is deemed a local output.

For example, consider the region in the dashed box in Figure 1 with

static statement shown in Listing 1. Here x64 and x9, in Listing 1,

correspond to the input of wordCount, and list. Similarly x59,

x61, and x62 corresponds to the output of wordCount, inWord, and

done respectively.

- Create Gated Single Assignment(GSA): Part of the state-

ment recovery is the creation of the GSA from a Static-Single-

Assignment (SSA) form. Thus in this transformation Java Ranger

changes 𝜙-statements, that join local variable updates from differ-

ent branches, to an assignment with the right-hand-side expression

being a 𝛾-expression. The 𝛾-expression have an extra parameter

(than the 𝜙-expression) that describes the condition of the matching

if-statement. For example, the right-hand side of the assignment

to x59 (output of wordCount) in Listing 1 is the GSA form for the

first 𝜙-expression shown in BB45 in Figure 2. The GSA captures

the conditions as well as possible assignments for x59.

2) Early-Return Summarization

Code regions can be exited due to function calls, exceptions, or

return-statements. In this transformation, we factor out the predi-

cate that describes paths leading to a return-statement, i.e., RE exit

point. This is done by creating and maintaining two expressions,

conditional-return-expressions and return path constraint (RPC). The

conditional-return-expression contains all possible expressions en-

closed in return-statements, predicated by their relative path con-

dition in the static statement.

For example, consider a simple if-statement:

𝑖 𝑓 (𝑥1 > 1) 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥2 𝑒𝑙𝑠𝑒 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥3;. Here 𝑥2 and 𝑥3 needs

to be captured in the conditional-return-expression. Thus Java

Ranger creates a new symbolic-return-variable 𝑥𝑟 ∈ 𝐼𝑑𝑠𝑟 , and

assigns it to 𝛾-expression that describes the return-expressions, i.e.,

𝑥𝑟 = 𝛾 (𝑥1 > 1, 𝑥2, 𝑥3). The 𝑅𝑃𝐶 on the other hand contains the

disjunctive conditions that describe all return-conditions. For the

example above, the 𝑅𝑃𝐶 will be (𝑥1 > 1 || 𝑥1 <= 1) which can be

reduced to 𝑡𝑟𝑢𝑒 to indicate that an early-return must occur in this

simple static statement on both sides of the branch.

3.3 Java Ranger Instantiation Algorithm

The goal of the instantiation process, described in Algorithm 1, is

to use runtime values to convert a static statement to a linearized

instantiated statement and finally to a region constraint.

The algorithm starts when DSE is about to execute a multi-path

region that begins with a conditional branch instruction with a

symbolic operand(s) for which JR has a static statement 𝑠 .

First, JR creates its initial environment 𝜔𝑜 from the current DSE

state 𝛿𝑠𝑦𝑚 . JR state includes: JR’s local variables map and the static

statement’s local inputs. JR state also includes a map for creating

GSA form for writes to objects referenced in the static statement.

This map is used to merge writes to fields of objects and contents

of arrays.

Java Ranger ensures the uniqueness of variable in 𝑠 by running

alpha-renaming transformation (line 3). Then, Java Ranger runs

transformations from the lines (6-14) repeatedly until a fixpoint is

Algorithm 1: JR Static Statement Instantiation Algorithm

1 Input: (Ranger IR Statement 𝑠 , DSE 𝛿𝑠𝑦𝑚);

2 𝜔𝑜 = construct-initial-state(s, 𝛿𝑠𝑦𝑚);

3 (𝜔𝛼 , 𝑠𝛼) = 𝛼-renaming(𝜔𝑜 , 𝑠);

4 (𝜔𝑏𝑓 , 𝑠𝑏𝑓) = (𝜔𝛼 , 𝑠𝛼);

5 𝜔𝑎𝑓 = 𝑛𝑢𝑙𝑙 ; 𝑠𝑎𝑓 = null;

6 repeat

7 if (𝜔𝑎𝑓 , 𝑠𝑎𝑓) ≠ null then 𝜔𝑏𝑓 , 𝑠𝑏𝑓 = (𝜔𝑎𝑓 , 𝑠𝑎𝑓);

8 𝑠𝑠𝑢𝑏 = substitute local inputs(𝜔𝑏𝑓 , 𝑠𝑏𝑓);

9 (𝜔ℎ𝑔 , 𝑠ℎ𝑔) = inline method regions(𝜔𝑏𝑓 , 𝑠𝑠𝑢𝑏);

10 (𝜔 𝑓 , 𝑠𝑓) = create ref. GSA(𝜔ℎ𝑔 , 𝑠ℎ𝑔);

11 (𝜔𝑎𝑟 , 𝑠𝑎𝑟) = create arr. GSA(𝜔 𝑓 , 𝑠𝑓);

12 (𝜔𝑠𝑚𝑝𝑙 , 𝑠𝑠𝑚𝑝𝑙) = simplify (𝜔𝑎𝑟 , 𝑠𝑎𝑟);

13 (𝜔𝑎𝑓 , 𝑠𝑎𝑓) = (𝜔𝑠𝑚𝑝𝑙 , 𝑠𝑠𝑚𝑝𝑙);

14 until (𝜔𝑏𝑓 , 𝑠𝑏𝑓) = (𝜔𝑎𝑓 , 𝑠𝑎𝑓)

15 (𝜔𝑠𝑝 , 𝑠𝑠𝑝) = collect single-path cases(𝜔𝑎𝑓 , 𝑠𝑎𝑓)

16 𝑠𝑙𝑛 = linearize(𝑠𝑠𝑝);

17 if is-linearized(𝜔𝑠𝑝 , 𝑠𝑙𝑛) then

18 𝑒 = generate constraint(𝜔𝑠𝑝 , 𝑠𝑙𝑛)

19 𝑃𝐶 = 𝑃𝐶 ∧ 𝑒;

20 populate outputs (𝜔𝑠𝑝);

21 𝑝𝑐 = address of first inst. after s;

22 else abort; /* resume DSE from cond. branch */

reached. These transformations perform different operations such

as substitution and method inlining.

Note that there is no particular order to run some of the transfor-

mations. For example, a statement may have a method invocation

on an object which itself is the result of a prior field access. Inlining

a method’s static statement requires knowing the runtime type of

the object to which it is bound, which can only be obtained after

running the F ield References GSA transformation. But, once the

method’s static statement has been inlined, it may include another

method invocation on an object which is the result of another field

access. Therefore, JR runs the transformations in lines 6-14 until

a fixpoint, in which the post-state region is unchanged from the

pre-state region, is reached.

Then Java Ranger factors out paths that involve object creation

and exceptions in line 14. These single-path casesmust be performed

by the DSE due to architectural limitations in SPF/JPF. In line 15

Java Ranger runs the linearization transformation. If the resulting

statement 𝑠𝑠𝑝 is linearized, that is 𝑠𝑠𝑝 is a composition of assign-

ment statements with no branching, then Java Ranger creates the

solver constraint in line 18, and adds it to the path condition (𝑃𝐶).

Then Java Ranger populates the instantiated statement’s outputs

(r399[0]_8, x59_1, x61_1, and x62_1 in Figure 3) to the stack

or the heap, where r399[0] is the output of the first element of

wrdStartIndArr. Java Ranger also sets the program counter (𝑝𝑐)

to the address of the bytecode instruction that occurs as the first

instruction in the immediate post-dominator. In our example, this

is the address of the instruction that performs the addition opera-

tion in 𝐵𝐵45 in Figure 2. These operations are shown on lines 19-21

of Algorithm 1.

128

Java Ranger: Statically Summarizing Regions for Efficient Symbolic Execution of Java ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

Line 21 describes the case when the immediate post-dominator

is the NENR exit point of the multi-path region. Similarly, at the

SP and/or the RE exit point(s), Java Ranger transfers the control

back to DSE if these exit points are feasible in the instantiated state-

ment. The exploration of SP and RE exit points is done by creating

exploration branching in the DSE (not shown in the algorithm).

If a fully-linearized form of the instantiated statement cannot be

produced, JR aborts and allows DSE to resume execution (line 22).

3.4 Instantiation-Time Transformations

In this section, we explain only seven transformations of the instan-

tiation phase. We elide the discussion of the two transformations,

the alpha-renaming and the simplification transformations, as they

were previously explained in Section 3.

1) Input Substitution: In this transformation, Java Ranger collects

the runtime values for inputs (predetermined in the static phase)

and substitutes them. For example, in Listing 1, x52, x9, x66,

x67, x39, and x64 are identified as inputs for element, list, i,

inWord, wrdStartIndArr, and wordCount respectively, and are

substituted by DSE’s runtime values (Listing 2).

2)MethodRegion Inlining: This transformation inlines the static

statement for a method invocation. It is, in general, impossible

to know statically which method to inline, and thus JR uses

instantiation-time values and type information to figure out (if

possible) the method that is about to be invoked. This is possible

if JR is able to find out which concrete reference is used in the

invocation. For recursive functions, JR inlines methods up to a

user-specified parametric depth.

The effects of this transformation on our motivating example

are:

if (!(a1 != -1)) then { skip; }

else { x4_3 = getfield(375, size);

if (!(0 < x4_3)) then throw else skip;

x4_4 = getfield(375, elementData);

x5_4 = x4_4[0]; ... }

x59 := 𝛾(a1!=-1, 𝛾(x57!=0, 𝛾(!(0!=0), x58, 0), 0), 0);

x61 := 𝛾(a1!=-1 𝛾(x57!=0, 𝛾(!(0!=0), 1, 0), 0), 0);

x62 := 𝛾(a1!=-1 𝛾(x57!=0, 𝛾(!(0!=0), 0, 0), 0), 1);

The above listing shows the result of inlining

𝐴𝑟𝑟𝑎𝑦𝐿𝑖𝑠𝑡 .𝑔𝑒𝑡 (𝐼)𝑂𝑏 𝑗𝑒𝑐𝑡 in the static statement of the multi-

path region in Figure 1. To do that, 𝑥9 in the recovered static

statement in Listing 1 is substituted by 375, the runtime concrete

value of the reference list. Then, using the concrete type of 375

allows Java Ranger to inline 375.𝑔𝑒𝑡 (𝐼)𝑂𝑏 𝑗𝑒𝑐𝑡 shown above.

3) Field References GSA Creation: This transformation ab-

stracts reference updates and lookups by capturing their semantics

through fresh local GSA variables that describe the computation.

Note that since local variables obtained from the CFG are already

in an Static-Single-Assignment form, Java Ranger needs only a

simpler transformation (the Gated Single Assignment transforma-

tion) to create their equivalent GSA form. This is unfortunately

not the case for references, and thus this transformation is used to

create the GSA for reference updates and lookups.

At the NENR exit point of the instantiated statement, field as-

signments to the same field are merged using 𝛾-expression.

In the motivating example, the field references transformation

on the above statement concretizes 𝑥4_3. In this case, to determine

the value of variable 𝑥43, the transformation looks up reference

number 375 in SPF’s representation of the heap, extracts the field

’size’ and determines that it is bound to the concrete value 7.

4) Array References GSA Creation: Similar to the field GSA

transformation, this transformation translates array accesses to

symbolic variables that reflect the array computations. It maintains

a path-specific copy of every array when it is first accessed using a

concrete array reference within an instantiated statement. Reads

and writes of arrays are then performed on a path-specific copy

of the array. All array copies are merged at the NENR of the in-

stantiated statement. The merged array copy represents the array’s

outputs of the instantiated statement. Out-of-bounds array accesses

are explored as a SP exit point. The effect of this transformation

on the last shown statement introduces the fresh symbolic vari-

ables r399[0]_8, r399[1]_9, and r399[2]_10 ∈ 𝐼𝑑𝑠 . These three

symbolic variables describe possible assignments to elements of

wrdStartIndArr with a 𝛾 condition1.

if (!(a1 != -1)) then { skip; }

else {...}

r399[2]_8 := 𝛾(a1!=-1, r399[1]_5, -1);

r399[2]_9 := 𝛾(a1!=-1, r399[1]_6, -1);

r399[2]_10 := 𝛾(a1!=-1, r399[2]_7, -1);

x59 := 𝛾(a1!=-1, 𝛾(x57!=0, 𝛾(!(0!=0), x58, 0), 0), 0);

x61 := 𝛾(a1!=-1 𝛾(x57!=0, 𝛾(!(0!=0), 1, 0), 0), 0);

x62 := 𝛾(a1!=-1 𝛾(x57!=0, 𝛾(!(0!=0), 0, 0), 0), 1);

5) Single-Path Cases Generation: Summarizing object creation

while path-merging requires maintaining a symbolic heap. Such

language features cannot be summarized and must be executed

using SPF because of the way SPF is architected and integrated

into JPF. In this phase, we build a guard predicate which avoids

paths that contain object creation and exceptions. We call these

paths single-path cases, and use SPF to execute them. The outcome

of this process is: (a) an JR statement that captures non-SP exit

point behavior in the instantiated statement and (b) a predicate that

is used to explore the SP exit point behaviour in the instantiated

statement.

In fact, the bug in our motivating example, Figure 1, is found

when Java Ranger directs the DSE to explore the SP exit point using

the SP predicate for the out-of-bounds array access. The added

predicate for directing DSE to this particular path is: (x61_1 == 0

) && (!((x59_1 < 3) && (x59_1 >= 0))), where x59 and

x61 are the output of the wordCount and inWord.

6) Linearization: At the point in Algorithm 1 when this transfor-

mation is run, all Java features other than if-statements, composi-

tion and assignments statements have been removed from within

the instantiated statement. This transformation then prepares the

instantiated statement by replacing if-statements with a composi-

tion of its "then" and "else" statements. This is correct as long as

the conditions of the eliminated if-statements are captured within

𝛾-expressions. Running this transformation, after a fixpoint has

been reached, produces the linearized instantiated statement in

Listing 3.

7) Constraint Generation: This transformation translates the

fully linearized statement to region constraint in Green [35]. This

1Definitions of r399[0]_5, r399[1]_6, and r399[2]_7 elided for space reasons.

129

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Vaibhav Sharma, Soha Hussein, Michael W. Whalen, Stephen McCamant, and Willem Visser

is done by translating statement composition into conjunction, as-

signments as equality constraints with assignments of 𝛾-expression

being translated as a disjunctive equality expressions.

4 EVALUATION

4.1 Implementation

We implemented Java Ranger as an extension of Symbolic

PathFinder [24]. We used the existing listener framework in SPF

that invokes a callback function for each bytecode instruction ex-

ecuted by SPF. JR adds a listener to SPF that, on every symbolic

branch, attempts path merging as described in Algorithm 1. JR uses

the incremental solving mode of the Z3 theorem prover [12] with

the bitvector theory. The incremental solving mode significantly

reduces the number of times a constraint has to be passed to the

solver. JR uses a heuristic to estimate the number of paths through a

linearized statement. The linearized instantiated statement is used

only if the estimated number of paths in the linearized instantiated

statement is greater than the number of exit points in it. This heuris-

tic avoids use of path-merging when it may not have been beneficial.

Our implementation of Java Ranger is publicly available [30].

4.2 Experimental Setup

Table 1: Benchmark programs used to evaluate Java Ranger

Bench

mark

name
Description SLOC

#

classes

#

methods

WBS
component to make

aircraft brake safely
265 1 3

TCAS
maintain aircraft

altitude separation
300 1 12

replace
search & replace

pattern in input
795 1 19

Nano

XML
XML Parser 4610 17 129

Siena
event notification

middleware
1256 10 94

Schedule priority scheduler 306 4 27

Print

Tokens2
lexical analyzer 570 4 30

ApacheCLI command-line parser 3612 18 183

Mer

Arbiter

flight software comp.

of NASA JPL Mars

Exploration Rovers
4697 268 553

We sought answers to the following research questions.

RQ1: Does Java Ranger reduce the number of execution paths and

running time in a program when exploring all feasible behaviors?

RQ2: Does Java Ranger reduce the time required for checking for

the absence of runtime errors in a program?

RQ3: How much does each Java Ranger feature contribute to per-

formance?

RQ4: How does Java Ranger compare to other state-of-the-art Java

verifiers?

We present the experimental setup used to answer each of these

research questions and the corresponding evaluation below.

RQ1: We evaluated the performance of Java Ranger using the

nine benchmarking programs presented in Table 1. We obtained

the first eight from the evaluation set used by Wang et al. [37] and

the last one (MerArbiter) from Yang et al. [40]. We used SPF as

the Dynamic Symbolic Executor (DSE) for comparing it with Java

Ranger. Path merging is useful in symbolic execution when it is

used for checking a property on all feasible behaviors or finding

all bugs in a program. We compared JR with SPF when exploring

all feasible paths through each benchmark. All benchmarks were

single-threaded execution, we leave exploration of static regions

in multi-threaded programs to future work. We used a wall time

budget of 12 hours for every benchmark. We ran every benchmark

with the most number of symbolic inputs with which an exploration

of all feasible behaviors could be completed in a wall time budget of

12 hours. The maximum heap size was limited for all the benchmark

runs with JR and SPF to 8 GB. We ran all of our experiments on a

machine running Ubuntu 16.04.6 LTS with Intel(R) Xeon(R) CPU

E5-2623 v3 processor and 192 GB RAM. We report our results in

Table 2.

JR achieves a total reduction of 38% and 71% reduction in total

running time and number of execution paths respectively across

all benchmarks. It also achieves an average of 63% reduction in

the number of solver queries. It is able to significantly reduce the

total number of execution paths on every benchmark where it finds

beneficial use of a static statement for a multi-path region.

JR achieves a significant speed-up over SPF with 5 (WBS, TCAS,

NanoXML, ApacheCLI, MerArbiter) of the 9 benchmarks in running

time and number of execution paths. It also achieves a modest 21%

and 40% reduction in running time and number of execution paths

respectively with the PrintTokens2 benchmark.

JR reduces the number of execution paths by about 88% in re-

place but incurs an increase in execution time by 187%. The 67.3%

reduction in the number of solver queries causes a 240% increase

in solver time spent by JR. In the future, we plan to mitigate such

negative effects of path-merging by integrating JR with a query

count estimation heuristic [20].

While not instantiating any statement, JR incurs a 2.6% running

time overhead on Siena. This primarily results from JR’s checking

if a conditional branch has symbolic operands and lookup of a

static statement for every symbolic branch. The total running time

of Schedule with SPF and JR is very small (1.5 and 2.5 seconds

respectively) compared to other benchmarks. JR’s static analysis

always adds about 2-3 seconds to the total time: this accounts for

loading the WALA framework, constructing a class hierarchy for

all classes in the classpath, and building the CFG for all methods in

Wala IR. On benchmarks like Schedule with a small total running

time, this overhead from static analysis is a higher percentage of

the total running time.

RQ2: Since path-merging brings symbolic execution closer to

symbolic bounded model-checking, we also used these benchmarks

to compare JR with JBMC [11]. JBMC is a Java model checker that

verifies programs by unwinding loops and looks for runtime excep-

tions. We ran each of our benchmarks with JBMC with the same

number of non-deterministic inputs reported in the ł# sym inputsž

column of Table 2. We configured JBMC to unwind loops in each

130

Java Ranger: Statically Summarizing Regions for Efficient Symbolic Execution of Java ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

Table 2: Comparing execution time and path count between JR and SPF

Bench

mark

name

#sym

input
tool

total

time

(sec)

%

red.

in

time

static

analysis

time

(sec)

#

exec.

paths

%red.

in #

exec.

paths

% red.

in #

que-

ries

#

summ.

used

WBS
15 SPF 4427.7

99.9
0.0 7.96E+06

100 100.00
-

30 JR 4.2 2.3 1.00E+00 140

TCAS
24 SPF 353.1

99.1
0.0 3.92E+04

100 100.00
-

120 JR 3.1 1.7 1.00E+00 40

replace
11 SPF 1145.3

-187.0
0.0 7.57E+05

88.1 67.30
-

11 JR 3287.6 5.9 9.04E+04 6502

Nano

XML

7 SPF 5741.4
46.2

0.0 3.61E+06
84.6 81.00

-

7 JR 3087.1 3.1 5.54E+05 147185

Siena
6 SPF 5571.9

-2.6
0.0 2.99E+06

0 0.00
-

6 JR 5715.6 7.3 2.99E+06 0

Schedule
3 SPF 1.5

-70.3
0.0 3.43E+02

0 0.00
-

3 JR 2.5 3.4 3.43E+02 0

Print

Tokens2

5 SPF 17045.8
21.3

0.0 3.06E+06
40.4 38.70

-

5 JR 13421.3 25.1 1.82E+06 1981982

Apache

CLI

5+1 SPF 4121.4
45.7

0.0 2.48E+05
92.9 99.10

-

5+1 JR 2238.1 5.3 1.76E+04 168907

Mer

Arbiter

24 SPF 9494.0
80.3

0.0 2.53E+05
83.9 81.50

-

24 JR 1873.4 3.6 4.08E+04 59845

Summary
- SPF 47901.9

38.13
0 1.89E+07

71 -
-

- JR 29632.8 57.7 5.51E+06 2364601

Table 3: Comparing total running time of SPF, Java Ranger, JBMC over the 9 benchmarks for verifying the absence of common

runtime errors. TO indicates timeout, given a 7 day time limit. Times for SPF and JR are reported in seconds.

tool

name
WBS TCAS replace

Nano

XML
Siena Schedule

Print

Tokens2

Apache

CLI

Mer

Arbiter

SPF 4427 353.1 1145.3 5741.4 5571.9 1.5 17045.8 4121.4 9494

JBMC 0.7 2.2 TO TO TO 5.62E+05 TO TO TO

Java Ranger 4.2 3.1 3287.6 3087.1 5715.6 2.5 13421.3 2238.1 1873.4

benchmark a given number of times and to add an assertion whose

violation indicates that a loop was not unrolled sufficient times.

We performed binary search to find the smallest loop bound for

each benchmark that would not cause a loop unwinding assertion

violation with JBMC. The smallest loop bounds we found with this

binary search for every benchmark were as follows: ApacheCLI=39,

Siena=8, PrintTokens2=82, replace=12, NanoXML=10, Schedule=10,

WBS=11, TCAS=11. For MerArbiter, we could not get JBMC to

falsify a loop-unwinding assertion for any positive value of the

loop-unwinding parameter. Therefore, we finally ran it with a loop

bound of 1. We ran every benchmark presented in Table 1 using SPF,

Java Ranger and JBMC where all three tools looked for common

runtime errors such as null dereferences, accessing out-of-bounds

entries in arrays, type cast errors, and division-by-zero errors. We

used a 7 day timeout for all three tools. We ran every benchmark

with the same number of symbolic inputs with all three tools. The

number of symbolic inputs is reported in the # sym inputs column

of Table 2.

We present our results in Table 3. The rows labeled SPF and Java

Ranger repeat the time reported in the total time (sec) column

of Table 2. We found JBMC was the fastest among the three tools

at being able to verify the absence of any runtime errors in both

WBS and TCAS. But, we found JBMC to be much slower with the

remaining 7 benchmarks. JBMC was able to complete verification

with Schedule in about 7 days. For the remaining six benchmarks,

JBMC did not finish in 7 days as indicated by TO in Table 3.

RQ3: JR can be separated into four path-merging features.

(F1) JR only transforms multi-path regions with a single NENR

exit point. This includes multi-path regions that have local, stack,

field, or array outputs.

(F2) JR inlines statements for methods called from a multi-path

region into the statement of the multi-path region.

(F3) JR instantiates static statements with an SP exit point

(F4) JR uses early-return summarization to allow statements to

have a RE exit point.

To answer RQ3, we evaluated the effect each feature has as more

features are cumulatively used in JR. We set up an experiment

131

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Vaibhav Sharma, Soha Hussein, Michael W. Whalen, Stephen McCamant, and Willem Visser

Table 4: Presenting the ratio of three metrics with path-

merging to the same threemetricswithout path-merging for

7 benchmarks where any path-merging was done. A ratio

less than 1 indicates path-merging was beneficial (smaller is

better). Path-merging features accumulate from left to right.

(a) Comparing running time

Bench

mark

name

basic

p.m.

+method

inlining

+single

path

cases

+early

return

summ.

WBS 0.0007 0.0007 0.0007 0.0006

TCAS 0.39 0.01 0.01 0.01

replace 1.36 2.10 2.82 2.87

Nano

XML
1.31 1.28 1.54 0.54

Print

Tokens2
0.88 0.76 0.78 0.79

Apache

CLI
0.17 2.54 0.50 0.54

Mer

Arbiter
0.24 0.21 0.21 0.20

(b) Comparing number of execution paths

Bench

mark

name

basic

p.m.

+method

inlining

+single

path

cases

+early

return

summ.

WBS 1.2E-07 1.2E-07 1.2E-07 1.2E-07

TCAS 0.24 2.5E-05 2.5E-05 2.5E-05

replace 0.63 0.90 0.12 0.12

Nano

XML
1.00 1.00 1.00 0.15

Print

Tokens2
0.84 0.84 0.84 0.60

Apache

CLI
0.07 0.07 0.07 0.07

Mer

Arbiter
0.16 0.16 0.16 0.16

where starting with no path-merging (aka SPF), we added path-

merging features in the aforementioned order (F1-F4). For every

benchmark where any path-merging was performed, we computed

the ratio of a metric with a set of path-merging features enabled

to the same metric’s value seen without path-merging. The two

metrics we measured were the running time, the number of exe-

cution paths explored. We present the results of this comparison

in Table 4. The łbasic p.m.ž column represents only enabling of

the F1 feature in JR. The ł+ method inliningž column enables the

F1 and F2 (inlining of method statements) features in JR. The ł+

single-path casesž column enables the F1, F2, and F3 (single-path

cases) features in JR. The ł+ early return summ.ž column enables all

the four features with early-return summarization. Table 4 shows

summarizing multi-path regions that have a NENR exit point (F1) is

most often useful. This observation matches our intuition that such

multi-path regions occur most frequently in Java. The addition of

method statement inlining (F2) provides a major reduction in all

three metrics in TCAS. This observation matches an observation

made manually from TCAS’ source code that multi-path regions in

it often invokemethods that can be summarized by Java Ranger. The

addition of single-path cases (F3) provides a major reduction in the

number of solver queries in the replace and NanoXML benchmarks.

Early-return summarization (F4) provides a significant reduction

in the number of execution paths and number of solver queries

in the NanoXML and PrintTokens2 benchmarks. The benefit from

this feature results from these benchmarks containing multi-path

regions that contain multiple RE exit points. Table 4 shows that

every path-merging feature present in JR has a beneficial impact

on at least one benchmark in our set.

Table 5: Comparing Java Ranger with participants of the

JavaOverall category of SV-COMP 2020

tool score
correct

true results

correct

false results

incorrect

results

JayHorn [18] 278 109 92 1

SPF [24] 442 135 172 1

COASTAL [13] 472 135 202 0

JDart [21] 524 150 224 0

JBMC [11] 527 151 225 0

Java Ranger 549 173 203 0

RQ4: Java Ranger participated in a static verification competition

named SVComp [29] The competition consisted of a Java verifica-

tion track in which six Java verifiers competed over 416 benchmark

programs. These benchmarks spanned regression tests introduced

by each of the participating tools. The benchmarks also included

implementations of algorithms for commonly used data structures

such as tries and red-black trees. The competition’s setup placed a

total memory limit of 15 GB and a limit of 8 CPU cores. The wall

time limit for running each benchmark in the competition was 15

minutes. We report the results from our participation as well as

scores of all competition participants in the Java track in Table 5.

Java Ranger was the best performing tool in the Java verification

track in the competition [38]. Of the total 416 Java verification tasks

that were used in the competition, Java Ranger instantiated at least

one static statement on 96 different benchmarks. The static state-

ment for a multi-path region can be instantiated more than once

on each benchmark because it is possible for the symbolic executor

to encounter the same multi-path region more than once while run-

ning the benchmark. In total, Java Ranger instantiated 356 distinct

static statements with the total number of instantiated statements

being 20,182. Java Ranger also inlined a method statement a total

of 62,857 times while instantiating static statements.

Java Ranger finished with a łunknownž result on 40 of the 416

verification tasks used in the competition. 22 of these were caused

due to a lack of support for symbolic strings. Java Ranger defaults to

vanilla SPF when it finds no opportunity for path-merging. On these

22 benchmarks, SPF’s lack of stable symbolic string support caused

a crash. Similarly, 9 of the 40 łunknownž results occurred due to

missing support for symbolic array lengths in multi-dimensional

132

Java Ranger: Statically Summarizing Regions for Efficient Symbolic Execution of Java ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

arrays in SPF. 8 of the 40 łunknownž results ran into a timeout. The

last łunknownž result was caused due to our limiting of the depth

of exploration choices for the competition.

5 DISCUSSION & FUTUREWORK

Java Ranger attempts to perform path merging whenever possible

without optimizing towards making fewer solver calls. We plan

to work towards implementing heuristics that can measure the

effect of path merging on the rest of the program. JR currently

lacks support for symbolic object and array references. Supporting

these would require integrating our implementation with SPF’s

lazy initialization [24] to let summaries contain symbolic object

references.

Generating test cases that cover all branches is a useful applica-

tion of dynamic symbolic execution. If applied as-is, test generation

will undo the benefits of path-merging. We intend to extend JR

towards test generation for merged paths in the future by target-

ing test generation towards a coverage criterion such as Modified

Condition/Decision Coverage.

Path merging allows symbolic execution to explore interesting

parts of a program sooner. But, the effect of path merging on search

strategies, such as depth-first search remains to be investigated. We

plan to explore the integration of such guidance heuristics with path

merging in the future. Finally, we plan to expand on our formalism

to prove completeness as well as soundness.

6 CONCLUSION

We have investigated the use of static summarizations to improve

the performance of symbolic execution of Java. For good perfor-

mance, we had to extend earlier work to account for Java’s dynamic

dispatch and likelihood of exceptions. Our experiments demon-

strate that static summarization may yield significant performance

improvements over single-path symbolic execution. Java Ranger

provides evidence that inlining method summarizations by using

type information available at runtime can lead to a further reduc-

tion in the number of execution paths. Java Ranger’s use of path-

merging is crucial to giving it an edge over existing Java verifiers

as demonstrated by its participation in a static verification com-

petition in a top theory conference. Java Ranger reinterprets and

extends path merging for symbolic execution of Java bytecode and

may allow symbolic execution to scale to exploration of real-world

Java programs.

ACKNOWLEDGMENT

The research described in this paper has been supported in part by

the Google Summer of Code program and by the National Science

Foundation under grant 1563920.

REFERENCES
[1] 2014. ISSTA 2014: Proceedings of the 2014 International Symposium on Software

Testing and Analysis. Association for Computing Machinery, New York, NY, USA.
[2] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. 2007. Compilers: principles,

techniques, and tools. Vol. 2. Addison-wesley Reading, MA, USA.
[3] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley. 2014.

Enhancing Symbolic Execution with Veritesting. In Proceedings of the 36th Inter-
national Conference on Software Engineering (ICSE 2014). ACM, New York, NY,
USA, 1083ś1094. https://doi.org/10.1145/2568225.2568293

[4] Domagoj Babić, Lorenzo Martignoni, Stephen McCamant, and Dawn Song.
2011. Statically-Directed Dynamic Automated Test Generation. In Proceed-
ings of the 2011 International Symposium on Software Testing and Analysis (IS-
STA ’11). Association for Computing Machinery, New York, NY, USA, 12ś22.
https://doi.org/10.1145/2001420.2001423

[5] Roberto Baldoni, Emilio Coppa, Daniele ConoD’elia, Camil Demetrescu, and Irene
Finocchi. 2018. A Survey of Symbolic Execution Techniques. ACM Comput. Surv.
51, 3, Article Article 50 (May 2018), 39 pages. https://doi.org/10.1145/3182657

[6] Dirk Beyer, Alessandro Cimatti, Alberto Griggio, M. Keremoglu, and Roberto
Sebastiani. 2009. Software model checking via large-block encoding. 9th Interna-
tional Conference Formal Methods in Computer Aided Design, FMCAD 2009, 25 ś
32. https://doi.org/10.1109/FMCAD.2009.5351147

[7] J. Burnim and K. Sen. 2008. Heuristics for Scalable Dynamic Test Generation. In
2008 23rd IEEE/ACM International Conference on Automated Software Engineering.
IEEE, New York, NY, USA, 443ś446. https://doi.org/10.1109/ASE.2008.69

[8] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI’08). USENIX Association, USA, 209ś224.

[9] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2012. The S2E
Platform: Design, Implementation, and Applications. ACM Trans. Comput. Syst.
30, 1 (2012), 2:1ś2:49. http://doi.acm.org/10.1145/2110356.2110358

[10] Lori A. Clarke. 1976. A System to Generate Test Data and Symbolically Execute
Programs. IEEE Trans. Software Eng. 2, 3 (1976), 215ś222. https://doi.org/10.1109/
TSE.1976.233817

[11] Lucas Cordeiro, Pascal Kesseli, Daniel Kroening, Peter Schrammel, and Marek
Trtik. 2018. JBMC: A Bounded Model Checking Tool for Verifying Java Bytecode.
In Computer Aided Verification, Hana Chockler and Georg Weissenbacher (Eds.).
Springer International Publishing, Cham, 183ś190.

[12] Leonardo de Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT Solver. In
Tools and Algorithms for the Construction and Analysis of Systems, C. R. Ramakr-
ishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
337ś340.

[13] Jaco Geldenhuys, Justin Stigling, and Willem Visser. 2020. COASTAL: Concolic
analysis tool for Java. https://github.com/DeepseaPlatform/coastal. (2020).

[14] Patrice Godefroid. 2007. Compositional Dynamic Test Generation. SIGPLAN Not.
42, 1 (Jan. 2007), 47ś54. https://doi.org/10.1145/1190215.1190226

[15] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-
mated Random Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’05). ACM, New York,
NY, USA, 213ś223. https://doi.org/10.1145/1065010.1065036

[16] Trevor Hansen, Peter Schachte, and Harald Sùndergaard. 2009. State Joining
and Splitting for the Symbolic Execution of Binaries. In Runtime Verification,
Saddek Bensalem and Doron A. Peled (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 76ś92.

[17] IBM. 2006ś2020. WALA. http://wala.sourceforge.net/wiki/index.php/Main_Page.
(2006ś2020). Accessed: 2018-11-16.

[18] Temesghen Kahsai, Philipp Rümmer, and Martin Schäf. 2019. JayHorn: A Java
Model Checker. In Tools and Algorithms for the Construction and Analysis of
Systems, Dirk Beyer, Marieke Huisman, Fabrice Kordon, and Bernhard Steffen
(Eds.). Springer International Publishing, Cham, 214ś218.

[19] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM
19, 7 (1976), 385ś394. http://doi.acm.org/10.1145/360248.360252

[20] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea. 2012.
Efficient State Merging in Symbolic Execution. In Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI
’12). ACM, New York, NY, USA, 193ś204.

[21] Kasper Luckow, Marko Dimjašević, Dimitra Giannakopoulou, Falk Howar, Malte
Isberner, Temesghen Kahsai, Zvonimir Rakamarić, and Vishwanath Raman. 2016.
JDart: A Dynamic Symbolic Analysis Framework. In Proceedings of the 22nd
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS) (Lecture Notes in Computer Science), Marsha Chechik and
Jean-François Raskin (Eds.), Vol. 9636. Springer, New York, NY, USA, 442ś459.

[22] T. Nguyen, M. B. Dwyer, and W. Visser. 2017. Symlnfer: Inferring program
invariants using symbolic states. In 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE). 804ś814. https://doi.org/10.1109/ASE.
2017.8115691

[23] Karl J. Ottenstein, Robert A. Ballance, and Arthur B. MacCabe. 1990. The Program
Dependence Web: A Representation Supporting Control-, Data-, and Demand-
driven Interpretation of Imperative Languages. In Proceedings of the ACM SIG-
PLAN 1990 Conference on Programming Language Design and Implementation
(PLDI ’90). ACM, New York, NY, USA, 257ś271. https://doi.org/10.1145/93542.
93578

[24] Corina S. Păsăreanu, Willem Visser, David Bushnell, Jaco Geldenhuys, Peter
Mehlitz, and Neha Rungta. 2013. Symbolic PathFinder: integrating symbolic
execution with model checking for Java bytecode analysis. Automated Software
Engineering 20, 3 (01 Sep 2013), 391ś425. https://doi.org/10.1007/s10515-013-
0122-2

133

https://doi.org/10.1145/2568225.2568293
https://doi.org/10.1145/2001420.2001423
https://doi.org/10.1145/3182657
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1109/ASE.2008.69
http://doi.acm.org/10.1145/2110356.2110358
https://doi.org/10.1109/TSE.1976.233817
https://doi.org/10.1109/TSE.1976.233817
https://github.com/DeepseaPlatform/coastal
https://doi.org/10.1145/1190215.1190226
https://doi.org/10.1145/1065010.1065036
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://doi.acm.org/10.1145/360248.360252
https://doi.org/10.1109/ASE.2017.8115691
https://doi.org/10.1109/ASE.2017.8115691
https://doi.org/10.1145/93542.93578
https://doi.org/10.1145/93542.93578
https://doi.org/10.1007/s10515-013-0122-2
https://doi.org/10.1007/s10515-013-0122-2

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Vaibhav Sharma, Soha Hussein, Michael W. Whalen, Stephen McCamant, and Willem Visser

[25] David A Ramos and Dawson R. Engler. 2011. Practical, Low-effort Equivalence
Verification of Real Code. In Proceedings of the 23rd International Conference
on Computer Aided Verification (CAV’11). Springer-Verlag, Berlin, Heidelberg,
669ś685. http://dl.acm.org/citation.cfm?id=2032305.2032360

[26] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Concolic Unit
Testing Engine for C. In Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (ESEC/FSE-13). ACM, New York, NY, USA,
263ś272. https://doi.org/10.1145/1081706.1081750

[27] Koushik Sen, George Necula, Liang Gong, and Wontae Choi. 2015. MultiSE:
Multi-path Symbolic Execution Using Value Summaries. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015).
ACM, New York, NY, USA, 842ś853. https://doi.org/10.1145/2786805.2786830

[28] V. Sharma, K. Hietala, and S. McCamant. 2018. Finding Substitutable Binary Code
for Reverse Engineering by Synthesizing Adapters. In 2018 IEEE 11th International
Conference on Software Testing, Verification and Validation (ICST). IEEE Computer
Society, Los Alamitos, CA, USA, 150ś160. https://doi.org/10.1109/ICST.2018.00024

[29] Vaibhav Sharma, Soha Hussein, Michael W. Whalen, Stephen McCamant, and
Willem Visser. 2020. Java Ranger at SV-COMP 2020 (Competition Contribution).
In Tools and Algorithms for the Construction and Analysis of Systems, Armin Biere
and David Parker (Eds.). Springer International Publishing, Cham, 393ś397.

[30] Vaibhav Sharma, Soha Hussein, Michael W. Whalen, Stephen McCamant, and
Willem Visser. 2020. java-ranger: v1.0.0. (Jun 2020). https://doi.org/10.5281/
zenodo.3907232

[31] Yan Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J.
Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna. 2016. SOK: (State of) The
Art of War: Offensive Techniques in Binary Analysis. In 2016 IEEE Symposium on
Security and Privacy (SP). IEEE, New York, NY, USA, 138ś157. https://doi.org/10.
1109/SP.2016.17

[32] Nick Stephens, John Grosen, Christopher Salls, Audrey Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In
23rd Annual Network and Distributed System Security Symposium, NDSS 2016, San
Diego, California, USA, February 21-24, 2016. The Internet Society, San Diego, CA,

1ś16.
[33] Wei Sun, Lisong Xu, and Sebastian Elbaum. 2017. Improving the Cost-

effectiveness of Symbolic Testing Techniques for Transport Protocol Implemen-
tations Under Packet Dynamics. In Proceedings of the 26th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (ISSTA 2017). ACM, New York,
NY, USA, 79ś89. https://doi.org/10.1145/3092703.3092706

[34] Peng Tu and David Padua. 1995. Efficient Building and Placing of Gating Func-
tions. In Proceedings of the ACM SIGPLAN 1995 Conference on Programming
Language Design and Implementation (PLDI ’95). Association for Computing
Machinery, New York, NY, USA, 47ś55. https://doi.org/10.1145/207110.207115

[35] Willem Visser, Jaco Geldenhuys, and Matthew B. Dwyer. 2012. Green: Reduc-
ing, Reusing and Recycling Constraints in Program Analysis. In Proceedings
of the ACM SIGSOFT 20th International Symposium on the Foundations of Soft-
ware Engineering (FSE ’12). ACM, New York, NY, USA, Article 58, 11 pages.
https://doi.org/10.1145/2393596.2393665

[36] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and Flavio
Lerda. 2003. Model Checking Programs. Automated Software Engineering 10, 2
(01 Apr 2003), 203ś232. https://doi.org/10.1023/A:1022920129859

[37] H. Wang, T. Liu, X. Guan, C. Shen, Q. Zheng, and Z. Yang. 2017. Dependence
Guided Symbolic Execution. IEEE Transactions on Software Engineering 43, 3
(March 2017), 252ś271. https://doi.org/10.1109/TSE.2016.2584063

[38] Phillipp Wendler. 2020. SV-COMP 2020 ś JavaOverall ś BenchExec
Results. https://sv-comp.sosy-lab.org/2020/results/results-verified/META_
JavaOverall.table.html. (2020).

[39] Khaled Yakdan, Sebastian Eschweiler, Elmar Gerhards-Padilla, and Matthew
Smith. 2015. No More Gotos: Decompilation Using Pattern-Independent Control-
Flow Structuring and Semantics-Preserving Transformations. In The 2015 Network
and Distributed System Security Symposium. The Internet Society, Reston, VA,
USA. https://doi.org/10.14722/ndss.2015.23185

[40] Guowei Yang, Corina S. Păsăreanu, and Sarfraz Khurshid. 2012. Memoized
Symbolic Execution. In Proceedings of the 2012 International Symposium on Soft-
ware Testing and Analysis (ISSTA 2012). ACM, New York, NY, USA, 144ś154.
https://doi.org/10.1145/2338965.2336771

134

View publication stats

http://dl.acm.org/citation.cfm?id=2032305.2032360
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/2786805.2786830
https://doi.org/10.1109/ICST.2018.00024
https://doi.org/10.5281/zenodo.3907232
https://doi.org/10.5281/zenodo.3907232
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1145/3092703.3092706
https://doi.org/10.1145/207110.207115
https://doi.org/10.1145/2393596.2393665
https://doi.org/10.1023/A:1022920129859
https://doi.org/10.1109/TSE.2016.2584063
https://sv-comp.sosy-lab.org/2020/results/results-verified/META_JavaOverall.table.html
https://sv-comp.sosy-lab.org/2020/results/results-verified/META_JavaOverall.table.html
https://doi.org/10.14722/ndss.2015.23185
https://doi.org/10.1145/2338965.2336771
https://www.researchgate.net/publication/347697652

	Abstract
	1 Introduction
	1.1 Motivating Example
	1.2 Java Ranger Overview

	2 Related Work
	3 Technique
	3.1 Java Ranger IR Grammar
	3.2 Static Phase
	3.3 Java Ranger Instantiation Algorithm
	3.4 Instantiation-Time Transformations

	4 Evaluation
	4.1 Implementation
	4.2 Experimental Setup

	5 Discussion & Future Work
	6 Conclusion
	References

