
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/372311330

Structural Test Input Generation for 3-Address Code Coverage Using Path-

Merged Symbolic Execution

Conference Paper · May 2023

DOI: 10.1109/AST58925.2023.00012

CITATIONS

0
READS

51

5 authors, including:

Soha Hussein

University of Minnesota Twin Cities

11 PUBLICATIONS 84 CITATIONS

SEE PROFILE

Stephen McCamant

University of Minnesota Twin Cities

75 PUBLICATIONS 4,124 CITATIONS

SEE PROFILE

Vaibhav Sharma

University of Minnesota Twin Cities

21 PUBLICATIONS 208 CITATIONS

SEE PROFILE

All content following this page was uploaded by Soha Hussein on 26 August 2023.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/372311330_Structural_Test_Input_Generation_for_3-Address_Code_Coverage_Using_Path-Merged_Symbolic_Execution?enrichId=rgreq-79c8417414edbfd742bfe3aa58fb7dba-XXX&enrichSource=Y292ZXJQYWdlOzM3MjMxMTMzMDtBUzoxMTQzMTI4MTE4MzczMDgwOUAxNjkzMDMxNjYyNjYz&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/372311330_Structural_Test_Input_Generation_for_3-Address_Code_Coverage_Using_Path-Merged_Symbolic_Execution?enrichId=rgreq-79c8417414edbfd742bfe3aa58fb7dba-XXX&enrichSource=Y292ZXJQYWdlOzM3MjMxMTMzMDtBUzoxMTQzMTI4MTE4MzczMDgwOUAxNjkzMDMxNjYyNjYz&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-79c8417414edbfd742bfe3aa58fb7dba-XXX&enrichSource=Y292ZXJQYWdlOzM3MjMxMTMzMDtBUzoxMTQzMTI4MTE4MzczMDgwOUAxNjkzMDMxNjYyNjYz&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Soha-Hussein-2?enrichId=rgreq-79c8417414edbfd742bfe3aa58fb7dba-XXX&enrichSource=Y292ZXJQYWdlOzM3MjMxMTMzMDtBUzoxMTQzMTI4MTE4MzczMDgwOUAxNjkzMDMxNjYyNjYz&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Soha-Hussein-2?enrichId=rgreq-79c8417414edbfd742bfe3aa58fb7dba-XXX&enrichSource=Y292ZXJQYWdlOzM3MjMxMTMzMDtBUzoxMTQzMTI4MTE4MzczMDgwOUAxNjkzMDMxNjYyNjYz&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Minnesota_Twin_Cities2?enrichId=rgreq-79c8417414edbfd742bfe3aa58fb7dba-XXX&enrichSource=Y292ZXJQYWdlOzM3MjMxMTMzMDtBUzoxMTQzMTI4MTE4MzczMDgwOUAxNjkzMDMxNjYyNjYz&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Soha-Hussein-2?enrichId=rgreq-79c8417414edbfd742bfe3aa58fb7dba-XXX&enrichSource=Y292ZXJQYWdlOzM3MjMxMTMzMDtBUzoxMTQzMTI4MTE4MzczMDgwOUAxNjkzMDMxNjYyNjYz&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephen-Mccamant?enrichId=rgreq-79c8417414edbfd742bfe3aa58fb7dba-XXX&enrichSource=Y292ZXJQYWdlOzM3MjMxMTMzMDtBUzoxMTQzMTI4MTE4MzczMDgwOUAxNjkzMDMxNjYyNjYz&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephen-Mccamant?enrichId=rgreq-79c8417414edbfd742bfe3aa58fb7dba-XXX&enrichSource=Y292ZXJQYWdlOzM3MjMxMTMzMDtBUzoxMTQzMTI4MTE4MzczMDgwOUAxNjkzMDMxNjYyNjYz&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Minnesota_Twin_Cities2?enrichId=rgreq-79c8417414edbfd742bfe3aa58fb7dba-XXX&enrichSource=Y292ZXJQYWdlOzM3MjMxMTMzMDtBUzoxMTQzMTI4MTE4MzczMDgwOUAxNjkzMDMxNjYyNjYz&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephen-Mccamant?enrichId=rgreq-79c8417414edbfd742bfe3aa58fb7dba-XXX&enrichSource=Y292ZXJQYWdlOzM3MjMxMTMzMDtBUzoxMTQzMTI4MTE4MzczMDgwOUAxNjkzMDMxNjYyNjYz&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vaibhav-Sharma-37?enrichId=rgreq-79c8417414edbfd742bfe3aa58fb7dba-XXX&enrichSource=Y292ZXJQYWdlOzM3MjMxMTMzMDtBUzoxMTQzMTI4MTE4MzczMDgwOUAxNjkzMDMxNjYyNjYz&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vaibhav-Sharma-37?enrichId=rgreq-79c8417414edbfd742bfe3aa58fb7dba-XXX&enrichSource=Y292ZXJQYWdlOzM3MjMxMTMzMDtBUzoxMTQzMTI4MTE4MzczMDgwOUAxNjkzMDMxNjYyNjYz&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Minnesota_Twin_Cities2?enrichId=rgreq-79c8417414edbfd742bfe3aa58fb7dba-XXX&enrichSource=Y292ZXJQYWdlOzM3MjMxMTMzMDtBUzoxMTQzMTI4MTE4MzczMDgwOUAxNjkzMDMxNjYyNjYz&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vaibhav-Sharma-37?enrichId=rgreq-79c8417414edbfd742bfe3aa58fb7dba-XXX&enrichSource=Y292ZXJQYWdlOzM3MjMxMTMzMDtBUzoxMTQzMTI4MTE4MzczMDgwOUAxNjkzMDMxNjYyNjYz&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Soha-Hussein-2?enrichId=rgreq-79c8417414edbfd742bfe3aa58fb7dba-XXX&enrichSource=Y292ZXJQYWdlOzM3MjMxMTMzMDtBUzoxMTQzMTI4MTE4MzczMDgwOUAxNjkzMDMxNjYyNjYz&el=1_x_10&_esc=publicationCoverPdf

1

Structural Test Input Generation for 3-Address Code
Coverage Using Path-Merged Symbolic Execution

Soha Hussein‡ ∗, Stephen McCamant∗, Elena Sherman†, Vaibhav Sharma ∗ and Mike Whalen ∗
∗Department of Computer Science, University of Minnesota, USA

Email: soha@umn.edu, mccamant@cs.umn.edu, vaibhav@umn.edu, mwwhalen@umn.edu
†Department of Computer Science, Boise State University, USA

Email: elenasherman@boisestate.edu

Abstract—Test input generation is one of the key applications
of symbolic execution (SE). However, being a path-sensitive
technique, SE often faces path explosion even when creating
a branch-adequate test suite. Path-merging symbolic execution
(PM-SE) alleviates the path explosion problem by summarizing
regions of code into disjunctive constraints, thus traversing at
once a set of paths with the same prefixes. Previous work has
shown that PM-SE can reduce run-time up to 38%, though these
improvements can be impaired if the summarized code results
in complex constraints or introduces additional symbols that
increase the number of branching points in the later execution.

Considering these trade-offs, examining the ability of PM-
SE to generate branch-adequate test inputs is an open research
problem. This paper investigates it by developing a technique
that extracts structural coverage-related queries from disjoint
constraints. Using this approach, we extend PM-SE to generate
branch-adequate test inputs.

Experiments compare the effectiveness and efficiency of test
input generation by SE and PM-SE techniques. Results show
that those techniques are complementary. For some programs,
PM-SE yields faster coverage, with fewer generated tests, while
for others, SE performs better. In addition, each technique covers
branches that the other fails to discover.

I. INTRODUCTION

Traditional symbolic execution (SE) is a widely used verifi-
cation technique that explores the program paths symbolically.
Besides verifying program properties, SE is extensively used
for generating program test inputs. However, SE’s performance
is hindered by the enormous number of paths it needs to
explore, i.e., the path-explosion problem.

One of the techniques that aim at alleviating this problem
is path-merging. Path-merged symbolic execution (PM-SE) is
an extension of SE that traverses a set of paths at once.
In PM-SE, execution paths are collapsed and summarized
into a disjunctive logical constraint that describes the be-
havior of different paths within a code region. Thus, PM-
SE works similarly to SE but looks for opportunities to
collapse regions of code into logical constraints instead of
traversing them individually. Previous work [1] shows that
PM-SE can substantially speed up SE, e.g., in some cases
reducing the running time by 38%. However, PM-SE has
two shortcomings that could affect its performance: PM-SE
increases the complexity of constraints due to expressing larger

‡Ain Shams University, Egypt
Lecturer on leave of absence (soha.hussien@cis.asu.edu.eg)

code with disjunctions, and PM-SE summarization encoding
can introduce new symbolic variables, which PM-SE could
use for additional future branching.

Our interest in this paper is to generate test inputs for
various structural coverage criteria of control flows such
as branch coverage, or the modified condition and decision
coverage (MCDC) [2] criterion. Throughout the paper, we use
the term obligations to refer to any structured coverage target
in the code. For example, to achieve branch coverage, each
side of each branch in the code represents an obligation. To
generate test inputs using SE, one can easily compute the
satisfying assignment (model) of the path constraint at the
end of every execution path. This approach creates test inputs
that are path adequate. While this coverage criterion subsumes
other criteria [3], it is not practical as it can generate an
exponential number of test inputs. Unfortunately, generating
branch-adequate test inputs using SE could in the worst case
degrade to the exploration of all paths. That is because, without
a non-trivial analysis, only exploring all path SE can rule
out infeasible coverage targets. Thus, while it can reduce the
number of generated inputs from path-adequate to branch-
adequate, it might not reduce the number of explored paths.

On the other hand, generating test inputs that are branch
adequate is not as straightforward for PM-SE. PM-SE cannot
reason about each branch separately, since the effectiveness
of the path merging comes from summarizing branches in a
single disjunctive constraint.

One way for PM-SE to generate test inputs that target
uncovered branches is to disable the path merging for code
regions containing them and enable it otherwise. Unfortu-
nately, path-merging benefits are lost for the paths that cover
a single branch outcome of a conditional statement. Thus, the
challenge is to enable branch-adequate test input generation
while preserving the run-time efficiency of the path merging.

Our proposed technique solves this problem by following
this high-level idea. When PM-SE is about to collapse a
region of code into a region summary, it checks whether this
code region contains any uncovered obligations. If it does, it
expands its complex conditions, if any, into multiple nested
constraints. Then, it assigns each obligation condition to a
fresh boolean symbolic variable. A value of true for such a
variable represents coverage of its obligation.

At the end of an exploration, the technique conjoins a dis-
junction of obligation variables to the resulting path-constraint

https://orcid.org/0000-0002-5071-6811
https://orcid.org/0000-0001-9877-8926
https://orcid.org/0000-0003-3824-1435

2

formula. It checks for the satisfiability of the augmented
formula. If it is satisfiable, it obtains the model as a test case
and checks off obligations that have “true” assignments for
their symbolic variables. The technique then removes those
symbolic variables from the disjunction.

The process is then repeated over the remaining uncovered
obligations. Once the constraint becomes unsatisfiable, indi-
cating no more coverage can be produced from this execution
path, PM-SE then resumes execution by backtracking and
exploring another path.

To decrease the number of calls to the solver, our im-
plementation takes advantage of the satisfiability calls made
during exploration to determine some test inputs. Also, our
implementation skips covered obligations from marking during
the merging process, thus reducing the overall complexity of
the resultant disjunctive constraint.

We implement our technique as an extension to Java Ranger
(JR) [1], a path merging symbolic execution tool for Java byte-
code programs based on Symbolic Java PathFinder (SPF) [4].
We evaluate our approach using eight SPF/JR benchmarks to
generate branch-adequate test inputs. Our approach handles
partially summarized regions, regions with multiple return-
statements, and complex conditions.

Our evaluations show that out of 8 programs JR achieves
better coverage for 3, generates fewer test inputs for 3 and
improves performance for 4 programs when compared with
SPF. Overall we conclude that JR and SPF are complementary
approaches, whose performance depends on program structure
and constraint complexity.

This paper makes the following contributions:
• We present a new approach that generates test inputs

with PM-SE by defining and collecting the control-flow
structured obligation coverage.

• We use this approach to obtain branch coverage for three-
address code and implement it as an extension to Java
Ranger (JR): a PM-SE for Java.

• We evaluate JR’s ability to generate branch-adequate test
inputs for eight benchmarks and compare the results with
traditional SE.

This paper is organized as follows. Sec. II discusses some
background and presents an example. Sec. III presents our
technique for PM-SE obligation adequate test input generation.
Sec. IV shows how the technique can use it to collect branch
coverage for three address code . Finally, Sec. V, Sec. VI, and
Sec. VIII discuss our evaluation, related work, and conclusion.

II. BACKGROUND AND A MOTIVATING EXAMPLE

A. Background

Java Ranger (JR) [1], [5] is a path merging symbolic
execution tool for Java programs. It is implemented as an
enhancement of Symbolic PathFinder (SPF) [4], which is a
traditional symbolic execution for Java programs. JR works by
intercepting symbolic branches that SPF is about to execute,
and trying to collapse paths from that instruction until its
immediate post-dominator. This region of code is called a
multi-path region. JR collapses paths in the multi-path region
by describing its behavior as a disjunctive constraint. First, JR

1. public int getSetBits(int i) {
2. int numOfSetBits = 0;
3. while (i != 0) {
4. if ((i & 15) != 0) // oblg_4_TK/NT
5. numOfSetBits += count4Bits(i);
6. i = (i >>> 4); }
7. return numOfSetBits;}

8. public int count4Bits(int i) {
9. int count = 0;
10. if ((i & 1) == 1) // oblg_10_TK/NT
11. count++;
12. if ((i & 2) == 2) // oblg_12_TK/NT
13. count++;
14. if ((i & 4) == 4) // oblg_14_TK/NT
15. count++;
16. if ((i & 8) == 8) // oblg_16_TK/NT
17. count++;
18. return count; }

Fig. 1: Computing the number of set bits in a 32-bit integer
by iteratively counting those set in the 4 right-most bits.

(i != 0) ∧ (t1 == (i & 15)) ∧ (t1 != 0) ∧ · · ·

Fig. 2: Partial path condition when executing lines 2, 3, 4, 9
and before executing line 10 in Fig.1 using SE.

translates control flow graph of multi-path region to its Inter-
mediate Representation (IR). Then, JR uses multiple transfor-
mations to translate Java features into disjunctive constraint.
At that point, JR conjoins the disjunctive constraint onto the
path condition, updates the state, and points SPF to execute
the instruction right after the immediate post-dominator.

A single exploration in SE, a path, is an execution from the
beginning of the program to the termination, where at each
branch, a single side is executed. On the other hand, a single
exploration in PM-SE, is an execution from the beginning of
the program to termination, where some regions may have
been summarized as a disjunctive constraint.

B. Motivating Example

Consider the code in Figure 1, where comments are used
to label branch obligations. We use taken (TK), and not
taken (NT) to refer to the ”then” and the ”else” branches
of a conditional statement.

The program counts the number of set bits in a 32-bit
integer that it takes as an argument i, and returns this count
in numOfSetBits. First, the program checks whether i is
not zero (line 3), and then it checks whether the last four
bits of i are not all zeros (line 4). After ensuring that at
least one of the last four bits is set to one, it invokes the
method count4Bits at line 5. count4Bits uses a bit-wise
and operator to determine whether a bit at a specific index
location is not zero and updates count. On returning from
count4Bits, the program updates its local count and shift
bits of i to the right by four places so that it can look for set
bits in the next four bits.

When SE interprets this code, at each conditional statement,
SE must choose at most one branch at a time to explore.

3

(t1 == (i & 15) ∧
(((((t2 == (i & 1)) ∧
(((t2 == 1) ∧ (count1 == 1)) ∨
((t2 != 1) ∧ (count1 == 0)))))

Fig. 3: Snippet of the JR’s disjunctive constraint for merging
lines 4–5 in getSetBits on the first iteration of the while-loop.

1 t1 := i & 15 //line 4
2 t2 := i & 1 //line 10
3 count1 := γ(t2==1, 1, 0)
4 t3 := i & 2 //line 12
5 count2 := count1 + 1 //line 13
6 count3 := γ(t3==2, count2, count1)
7 t4 := i & 4 //line 14
8 count4 := count3 + 1 //line 15
9 count5 := γ(t4==4, count4, count3)

10 t5 := i & 8 //line 16
11 count6 := count5 + 1 //line 17
12 count7 := γ(t5==8, count6, count5)
13 numOfSetBits1 := 0 + count7 //line 5
14 numOfSetBits2:=γ(t1==0, numOfSetBits1, 0)
15 --
16 oblg_4_TK1 := γ(t1==0, 0, 1)
17 oblg_4_NK1 := γ(t1==0, 1, 0)
18 oblg_10_TK1 := γ(t2==1, 1, 0)
19 oblg_10_NK1 := γ(t2==1, 0, 1)
20 oblg_10_TK2 := γ(t1==0, oblg_10_TK1, 0)
21 oblg_10_NK2 := γ(t1==0, oblg_10_NK1, 0)

Fig. 4: Upper part: JR IR representation, just before transform-
ing it into a disjunctive constraint. Lower part: a snippet of the
amended IR for identifying obligation coverage. oblg 10 -

TK2 and oblg 10 NT2 used to propagate the condition of t1
for the satisfiablity of oblg 10 TK and oblg 10 NT.

For example, an exploration that is traversing the program by
executing lines 2, 3, 4, 9, 10, 11, 12, 14, 16, 18, 5, 6, 3 and 7,
is a path that SE can explore. Note that at each condition SE
only follows a single branch, and the constraint describing the
taken side must be conjoined to the path constraint (PC). For
example, Fig. 2 shows the PC when SE is about to execute line
10 in the above path 1. Thus, to generate a test input to cover
a specific branch, e.g., the taken branch oblg 10 TK of the
conditional statement on line 11, upon checking its feasibility
SE follows that taken branch and generates the corresponding
PC. After solving the PC, SE obtains test inputs that guarantee
to cover oblg 10 Tk.

Even though generating test inputs using SE is straight-
forward, in our experiment, after running for one hour SPF
generates 28,636 path constraints (PCs) for this example
program while producing 6 test inputs covering all 12 branch
obligations. PM-SE approaches PCs generation differently.
Fig. 3 depicts the resulting single disjunctive PC that JR
generates by merging lines 4 through 5 (including method in-
vocation). Here, count1 is an additional intermediate variable
defined by JR’IR. With such compact representation, PM-SE
loses the one-to-one relationship between a PC and branch
obligations, which makes computing branch coverage more

1We use ∧ and ∨ for logical conjunction and disjunction.

challenging. Clearly, a disjunctive constraint describing the
code region retains no information about coverage targets.

To explain the proposed approach for generating branch-
adequate test inputs from such constraints, let’s examine
Figure 4. The upper part of Figure 4 shows JR’s IR, in
3-address code [6](page 466), before its translation to this
constraint. In Fig. 4, i is the symbolic input, and t1-t5

are fresh temporary variables capturing the side effects of
the if-statements conditions on lines 4, 10, 12, 14, and
16 respectively in Figure 1. In this IR, variable numbering
is used to identify variables uniquely, such as in count1 -

count7, i.e., similar to the gated single static assignment [7]
of various variables. Lines 3, 6, 9, 12, 14 in Figure 4 capture
the value of the variables count, and numOfSetBits after the
if-statements using a γ-expression. A (γ(cond, e1, e2)) in
JR’s IR is a conditional expression that evaluates to e1 if the
condition (cond) holds or to e2 otherwise. For example, the
value of count3 at line 6 in Fig. 4 either increments the last
value (count2) by 1, or holds the value of the last count, i.e.,
count1.

Similar to SE, PM-SE checks the satisfiability of the
generated disjunctive PC to decide whether to proceed with
the program execution or not. As the example demonstrates,
without some mapping between the coverage targets within
the collapsed region to the logical expression in the constraint
responsible for its coverage, PM-SE has no information about
what branch obligations are covered by a given satisfiable PC
assignment.

To overcome this challenge, our extension tracks branch
obligations using assignments to special obligation variables.
An obligation variable is an internal IR variable associated
with a particular source obligation. For example, the lower part
of Fig. 4 (lines 16-21) shows a snippet of the obligation map-
ping created by the extension (the entire obligation marking is
removed for simplicity). Using this information, PM-SE looks
up the values of various obligation variables in a satisfiable
assignment. It uses the values of these obligation variables
to determine the coverage information of their corresponding
obligations. For example, if a satisfiable assignment evaluates
to true the obligation variable oblg 4 TK1 then the corre-
sponding taken branch obligation at line 4 is covered by that
test input. Since a summary might have multiple obligations
covered, our technique checks and marks off obligations within
the summarization. We implemented this technique as an
extension to JR. Unlike SE, JR finished executing the same
program in 6 seconds while generating 9 PCs and producing 5
test inputs that cover 12 branch obligations. In the next section,
we present our approach in detail, including algorithms that
can be implemented within a tool supporting PM-SE.

III. PM-SE OBLIGATION ADEQUATE TEST INPUT
GENERATION

A. Overview of the Approach

When PM-SE executes the program in Fig. 1, it identifies
lines 4–5 as a multi-path region. Note that this multi-path re-
gion also includes the summarization of the method invocation
of count4Bits(int i) at line 5.

4

Inside a multi-path region, there could be multiple obliga-
tions. For example, if branch coverage is the targeted coverage
criterion, then we need to cover both the Taken (TK) and the
Not Taken (NT) branches of conditional statements within
the multi-path region. For example, covering the branches of
the conditional statement on line 4, requires two obligations
to be covered: one where the condition (i & 15 != 0)

evaluates to true and another when the condition (i & 15

!= 0) evaluates to false. To label the obligations of con-
ditional statements inside a multi-path region, our technique
introduces obligation variables: boolean auxiliary symbolic
variables for each branch. For example, the two obligation
variables introduced to cover the branch line 4 of Fig. 1:
oblg 4 TK and oblg 4 NT, to cover the true and the false
obligations, respectively. A value of true for an obligation
variable indicates that its corresponding side of the symbolic
branch is covered. Similarly, we label obligations in the
count4Bits method because it is invoked at line 5.

When PM-SE attempts to merge a region, our technique
creates these auxiliary variables for uncovered obligations, in
the PM-SE state, and assigns them to true in the appropriate
control flow. Note that these variables are internal to JR’s,
i.e., they are not forked on, and thus they do not introduce
additional future paths. Then, PM-SE performs its customary
path merging. At the end of a path PM-SE creates a new
obligations clause, a disjunction of all uncovered obligation
variables created along that path. The algorithm conjoins this
clause with the PC and queries the underlying SMT solver
for the satisfiability of this conjunction. If the conjunction
is satisfiable, then at least one obligation variable in the
obligations clause must have been assigned to true. The
algorithm uses the satisfying assignment, i.e., the model, to
inquire about obligation variables with true values. It records
their corresponding obligations as covered and extracts the
covering test input from the model.

To obtain different assignments where other obligation
variables evaluate to true, the algorithm removes previously
covered obligation variables from the obligation clause and
repeats the process. This process continues until either all the
auxiliary variables have an assignment with true value, thereby
covering all branch obligations, or the SMT solver returns
unsatisfiable, indicating that no more obligation variables can
be covered in the current PC. Then, PM-SE backtracks to
traverse another set of paths or terminates if all of them are
explored. In the latter case, uncovered branches can be marked
as infeasible. For simplicity, PM-SE defaults to using SE to
collect their coverage for obligations that are explored but
are not part of a merged region, i.e., marking coverage once
execution of the taken or not-taken instruction.

For example, when PM-SE analyzes the example in
Fig. 1, and attempts to collapse the multi-path region (in
lines 4–5 including the summarization of the entire code of
count4Bits), the test input generation extension creates
obligation variables (indicated in green) in Fig. 1 and
assigns them to true where needed. Then at the end of
the path, our algorithm examines covered obligations. Our
approach attempts to check for coverage of all obligations
enclosed within the path-merged region. This includes, on the

first iteration, checking for coverage of (oblg 4 TK

∨ oblg 4 NT ∨ oblg 10 TK ∨ oblg 10 NT ∨
oblg 12 TK ∨ oblg 12 NT ∨ oblg 14 TK ∨
oblg 14 NT ∨ oblg 16 TK ∨ oblg 16 NT). We
omit the unique representation of obligation variables for
simplicity.

The algorithm conjoins this new clause with the PC
and queries the SMT solver for a satisfying assignment.
Let us assume that the returned satisfying assignment has
oblg 4 TK and oblg 10 TK being set to true. This
indicates that their corresponding branches are covered and
that the solver’s assignment of values to the method inputs
constitutes a test input. To obtain additional test inputs
that cover additional obligations, the algorithm removes
these two obligation variables from the obligation clause
resulting in (oblg 4 NT ∨ oblg 10 NT ∨ oblg 12 TK

∨ oblg 12 NT ∨ oblg 14 TK ∨ oblg 14 NT ∨
oblg 16 TK ∨ oblg 16 NT). The PM-SE extension
conjoins this new clause with the PC and queries the SMT
solver once again for a satisfying assignment. If at some
point the SMT solver returns unsatisfiable, then it means
that no more obligations can be covered along this path due
to conflicting clauses, and thus PM-SE resumes program
exploration until either all obligations are covered, or all
paths are analyzed.

B. Algorithm Details

Alg. 1 outlines the main steps of symbolically executing
a program using PM-SE, including test input generation
extension. Besides symbolically executing the program, the
algorithm returns the set of test inputs T that cover obligations
during execution. The algorithm inputs are:

• s0: the initial statement to be executed.
• i: the set of symbolic input parameters
• Θ: the set of all coverage obligations. For branch cover-

age, there are two obligations per branch.
• T: the set of all values
• V : a map of all valuations
The algorithm uses the following data structures:
• ∆: the set of symbols
• Π: the path condition (PC) created for the current path
• Θc: the set of covered obligations
• Σ: map between obligation variables and obligations.

Note that an obligation variable must map to a single
obligation, while each obligation can be satisfied by
multiple obligation variables. For example, in the first two
iterations of the while-loop in Fig. 1, each time when
PM-SE collapses line 4–5, it introduces new obligation
variables to represent the two sides of coverage targets
of each branch, i.e., to cover when ((i & 15) != 0)

holds, it creates two obligation variables oblg 4 TK1

and oblg 4 NT1. Then, in the second iteration it cre-
ates oblg 4 TK2 and oblg 4 NT2. Note that, the
satisfiablity of either of oblg 4 TK1, or oblg 4 TK2

indicates the coverage of the obligation oblg 4 TK.
• W: the worklist set of 4-tuple. A 4-tuple consists of the

next statement to be executed (Smt), along with the path

5

Algorithm 1: General Alg. for defining, collecting, and
generating test cases for any coverage criteria using PM-
DSE. Our extension is highlighted in grey.

input: Initial Stmt s0: IR Stmt
input: Set of symbolic input parameters i
input: Set of all obligations Θ
input: Set of values T
input: Valuations map V : ∆ ⇀ T
Data: Set of symbols ∆
Data: Path predicate Π : V → B
Data: Set of covered obligations Θc ⊆ Θ
Data: Map from obligation variables to obligations

Σ : ∆→ Θ
Data: Worklist W ⊆ Stmt×Π×∆× Σ

1 W← {(s0,⊤, i, ∅)}
2 Θc ← ∅
3 while W ̸= ∅ do
4 (w,W)← pickNext(W)
5 s← w[0] π ← w[1] δ ← w[2] σ ← w[3]
6 switch type(s) do
7 case if-stmt do
8 snext, π

′, δ′, σ′ ← merge(w)
9 W←W ∪ (snext, π

′, δ′, σ′)
10 end case
11 case halt do
12 T,Θc ← collectTestInputs(w,Θc, i)
13 end case
14 otherwise do
15 snext, π

′, δ′ ← resume SE(s, π, δ)
16 W←W ∪ {(snext, π′, δ′, σ)}
17 end case
18 end switch
19 end while
20 return T

predicate obtained so far (Π), the set of symbols (∆), and
the map of obligation variables to obligations (Σ).

The algorithm starts by initializing W with the initial
statement (s0), a true path predicate ⊤, a set of the symbolic
parameters (i), and an empty map form obligation variables
to obligations Σ (line 1). The set of covered obligations is
initialized to the empty set (line 2). The while-loop in lines
3–20 iterates over the worklist elements until it is empty.
In lines 4–5 the algorithm selects the next element from
the worklist w, and renames the remaining elements to W.
and the elements of its tuple are assigned to the following
variables: statement s, path predicate π, set of symbolic
variables δ, and the mapping of symbols to obligations σ.
Depending on the type of s: whether it is an if-statement,
a program termination statement (halt-statement), or any
other statement, the program proceeds to execute one of these
three cases. If s is an if-statement (lines 7–10), then the
algorithm invokes an extension of the merging process of PM-
SE, which generates the disjunctive constraint that describes
s. Besides updating s and π, the extension generates new
obligation variables and creates a set of tuples σ′ that maps

Algorithm 2: Expanding the extended merging process for
PM-SE. Our extension is highlighted in grey

input: A worklist element w ∈W
1 w′ ← w
2 repeat
3 w ← w′

4 s← w[0] π ← w[1] δ ← w[2] σ ← w[3]
5 s′ ← expand conditions(s)
6 soblg, δoblg ← mark oblg(s, δ)
7 sflat, δflat ← inline invocations(soblg, δoblg)
8 sgsa, δgsa, σgsa ← create oblg. GSA(sflat, δflat, σ)
9 s′, δ′, σ′ ← eliminate ref.(sgsa, π, δgsa, σgsa)

10 w′ ← (s′, π, δ′, σ′)
11 until w == w′

12 w′ = handle exceptions (w)
13 e = generate constraint (w′)
14 populate outputs(w′)
15 return (next(s), w′[1] ∧ e, w′[2], w′[3]))

those variables to obligations. It assigns updated values to a
4-tuple on line 8, which then on line 9 is added to the worklist.

When s is a halt statement, indicating the end of a path,
then the extension collects test inputs of all obligations that
could be covered along the traversed path (line 12). This
is done by constructing the obligation clause and by using
multiple solver queries. The paper describes this process later
in this section. Finally, if s is any other statement, then it
is symbolically executed with traditional SE, and the state is
updated accordingly (lines 14–17).

IV. BRANCH COVERAGE OF THREE ADDRESS CODE

In this section, we illustrate how we use the general Alg. 1
in computing test inputs for branch coverage. In particular, we
show how we achieve coverage of branches in merged regions
with complex conditions, how we mark obligations , how we
collect test inputs at the end of a path, and finally, how we
adapt various optimizations to minimize the number of solver
calls and reduce the complexity of the solver queries.

Alg. 2 shows, in black, the main steps for merging a code
region into a logical constraint. To do that PM-SE runs an
iterative computation, where it keeps eliminating one Java
feature after another from the statement s. More precisely,
it inlines method invocations, and it eliminates references.
When no change is detected, the algorithm then eliminates
exceptions, generates the disjunctive constraint e describing
paths within the region, updates the heap and stack and
finally, it returns the new state after conjuncting the disjunctive
constraint e onto the path condition π. Note that the function
next(s) returns the next sequentially composed statement to
s. For more information, readers are referred to [1].

Statements for TCG extensions are emphasized in grey. This
includes expanding complex conditions with multiple booleans
into an equivalent single boolean statement, marking obli-
gations that need coverage, and finally, uniquely identifying
obligation variables by generating their corresponding GSA.
In the rest of this section, we detail each of these steps.

6

1 t2 := (i & 1);
2 if (t2 == 1) {
3 oblg_6_TK := 1
4 counter1 := (0 + 1)
5 } else
6 oblg_6_NT := 1
7 ... // remaining IR omitted

Fig. 5: Snippet of IR after marking of obligations

A. Expanding Conditions

Our technique works on decompiled IR statements from
the program’s bytecode. Since the decompilation step might
create complex conditions (conditions with ”and” and ”or”
operations), expanding these conditions allows our technique
to distinguish the obligations of various simple branches. Our
extension removes complex conditions from the IR statement s
by expending the conditions. This facilitates isolating the
obligation of each condition which helps in the marking step
to be discussed next. To expand the conditions we use the
following rewrite rules:
(1) if (e1 && e2) s1 else s2 → if (e1) { if (e2) s1 else

s2} else s2
(2) if (e1 || e2) s1 else s2 → if (e1) s1 else { if (e2)
s1 else s2 }

B. Marking Obligations

Now that each if-statement has a single condition, we
can start marking their corresponding obligations. We divide
the marking process into three steps: (1) identification of
obligations within a statement s, i.e., the statement that is
about to be collapsed as a single logical constraint, (2) addition
of obligation variables to s, and (3) transformation of s to
create Gated Single Static Assignment (GSA) for obligation
variables. We discuss each of these steps:
(1) Identifying obligations: this step identifies all obligations
Θ to include in s. We do that by locating all branches in s and
creating a label for them using their location in the bytecode.
For example, to do the path-merging in Fig. 1 PM-SE creates
obligation labels (oblg 4, oblg 10, .. , oblg 16).
(2) Introducing obligation variables: this step creates obliga-
tion variables for each obligation that is not covered yet, and
maps them to their obligation labels.

This mapping is important, as it keeps track of the cov-
erage of an obligation once an obligation variable has been
satisfied. For example, we create two new obligation variables
oblg 6 NT, and oblg 6 TK, and map them with their
corresponding obligation labels (in σ) from the previous step.

Finally, we insert assignment statements within the structure
of s where these obligations are true. For example, we insert
the assignment statements in line 3, and line 6 in Fig. 5.
(3) Creating a Gated SSA: In this step, we generate the GSA
form [7] for obligation variables. For example, Fig. 6 shows a
snippet of the resultant IR after this step. Here besides creating
unique names for variables, we introduce γ-expressions at the
joining point of each branch. The appended unique number to
the obligation variable can be seen in oblg 6 NT1 instead of

1 t1 := (i & 15)
2 if (! (t1 == 0)) {
3 oblg_10_TK1 := 1
4 t2 := (i & 1)
5 if (t2 == 1) {
6 oblg_6_TK1 := 1
7 count2 := 0 + 1
8 } else {
9 oblg_6_NT1 := 1

10 }
11 oblg_6_TK2 := γ(t2==1, oblg_6_TK1, 0)
12 oblg_6_NT2 := γ(t2==1, 0, oblg_6_NT1)
13 ...} // remaining IR omitted

Fig. 6: Snippet IR after the creation of GSA

Algorithm 3: Generating test inputs for branch coverage

input: worklist at the end of the path w ∈W
input: covered obligations Θc

input: input parameters i
1 π ← w[1] σ ← w[3]
2 repeat
3 δuncovered ← {a | (a : ∆, o : Θ) ∈ σ ∧ o /∈ Θc}
4 oblgclause = ⊥

∨
δuncovered

5 (isSat,M) ← check sat (π∧ oblgclause)
6 if isSat then
7 Θc ← Θc ∪ extract coverage(M, δuncovered)
8 T ← T ∪ extract parameter values (M, i)
9 end if

10 until not isSat
11 return T,Θc

oblg 6 NT. While the introduced γ-expressions can be seen
in lines 10, and 11. These expressions enable the propagation
of the path constraint to obligation variables.

For example, in line 10 indicates that oblg 6 TK2 can be
true (by transitivity) if t2 == 1.

Observe that we also update the set of obligation variables
to obligations (Σ) to preserve the relationship between the two.

At this point, Alg. 2 has encoded the conditions that
constrain the satisfiability of obligation variables. As this IR
translates to a disjunctive constraint in line 13, the satisifiabil-
ity constraints for obligation variables are encoded within it.
This encoding allows us to generate test inputs by looking for
satisfied obligation variables at the end of an execution path.

C. Collecting Test Inputs

At the end of a path on line 12 of Algorithm 1, the
extension identifies all newly covered obligations. To do that,
it constructs the obligation clause and queries an SMT solver
about the satisifiablity of the resulting constraint conjuncted
with the path condition π.

It does it by collecting the set of all uncovered obligation
variables (line 3 Alg. 3). Next, it constructs the obligation
clause by disjoining ⊥ and all obligation variables (line
2. Then it checks the satisfiability of the obligation clause
conjuncted with the path condition π line 5. The result is a
boolean variable isSat, and the model M .

7

If the query is unsatisfiable, then the algorithm updates
the set of covered obligations (line 7) by checking which
uncovered obligations are true in M . Then, it extracts the
values of the input parameter i from the model and updates the
set of test inputs T (line 8). This process continues until no
more obligations can be satisfiable/covered, in which case, the
algorithm returns the updated test inputs T and the updated
set of covered obligations Θc (line 11).

To see how this works using our motivating example, let us
assume that we come at the end of the first execution path,
where the instantiated summary in Fig. 4 is collapsed within
the path condition. At that point, we construct an obligation
clause of the form: ⊥ ∨ oblg 4 TK1 ∨ oblg 4 NT1 ∨
oblg 10 TK2 · · · ∨ oblg 16 NT2. Then, we conjoin the
obligation clause with the path condition, and check the satis-
fiability of the resulting constraint. If the query is satisfiable,
then at least one of the obligation variables is true. Let us
assume that oblg 4 TK1, and oblg 10 TK2 were satisfied.
At this point, we use the solver’s model to check the values of
the input parameters; let us assume that the input parameter (i)
in Fig. 4 is i = 1, and that the set of test inputs is T . Finally,
we add these covered obligations from the set of covered
obligations Θc to become {oblg 4 TK1, oblg 10 TK2}.

To reduce the complexity of the obligation annotated
queries, we only perform the processes of removing complex
conditions, marking obligations, and creating obligation GSA
for uncovered obligations. Also, to minimize the number of
solver calls needed to collect test inputs, we use the solver
models for any query that is checked along the path. If any
of the obligation variables evaluate to true, then we mark off
their corresponding obligation. This allows us to minimize the
number of solver queries at the end of the path.

When Alg. 3 returns the updated set of test inputs and
updated set of covered obligations, Alg. 1 continues processing
elements in the worklist W , until it becomes empty. Then, the
algorithm terminates while returning the set of test inputs.

V. EVALUATION

We implemented our technique for generating branch-
adequate test inputs as an extension to JR [5] (accessible
through GitHub [8]). To compare it with SE, we also updated
the existing SPF feature for generating path-adequate test
inputs to generate branch-adequate ones; we call it branch test
input generation, BTIG. For that, we updated SPF to maintain
a set of all covered obligations. Then, we collect covered obli-
gations when SPF executes their corresponding taken or not-
taken instructions. Since our evaluation is comparing SPF’s
and JR’s BTIG extension, we will refer to these extensions as
SPF and JR, respectively, in the remainder of this section.

BTIG also attempts to reduce the number of tests that
SPF finally outputs. Instead of obtaining a solution at each
satisfiabilty check during a path exploration, BTIG collects
only one test input at the last staisfiability check. This is
sound because the last generated test input on a pat implies the
coverage of all encountered obligations along the same path.

The JR extension also uses our SPF’s BTIG for obligations
appearing on non-merged paths. Both SPF and JR are config-
ured to stop running after all branches are covered. However

TABLE I: Benchmarks borrowed from JR [1]

Benchmark SLOC # classes # methods
ApacheCLI 3612 18 183
NanoXML 4610 17 129

TCAS 300 1 12
WBS 265 1 3

Schedule 306 4 27
Siena 1256 10 94

PrintTokens 570 4 30
replace 795 1 19

this does not improve performance in practice, as there are
usually obligations that cannot be covered, and both techniques
need to complete full path exploration to confirm this.

Table I describes the set of 8 benchmarks used in evaluating
JR [1], omitting for MerArbiter, as our current implementation
does not support collecting obligations for inner classes. Both
SPF and JR extensions use the default search strategy in SPF,
which is depth-first search. Note that each benchmark can
have its arguments processed by SPF/JR as either concrete
or symbolic. We use this configuration in our experiments to
control complexity and thus the run-time of the experiments;
more symbolic inputs mean a harder program analysis prob-
lem. Also, we use the same configuration of symbolic/concrete
inputs for both SPF and JR to ensure that the target coverage
problem is the same for both tools. To reduce the cache effect,
in our experiments, we ran each configuration three times and
report the results of the last run.

We used Z3 [9] with the bit-vector theory as the underlying
solver for representing and solving constraints during the
execution of both JR and SPF. The experiment machine ran
Ubuntu 16.04.6 on a 3.6 GHz Intel Core i7-7700 CPU
processor with 32 GB RAM. We used a 12GB Java heap size.

To evaluate PM-SE’s ability to generate test inputs, we
answer the following research questions:

• RQ1: Compared to SPF, what is the JR’s run-time over-
head for generating branch adequate test inputs?

• RQ2: What is the effectiveness of the coverage over time
for each technique?

• RQ3: Are SE and PM-SE complementary to one another?

A. RQ1: JR’s Performance Overhead

To answer the first question, we ran SPF with BTIG, and the
JR with BTIG, as well as all path-merging features, enabled.
Here we configured each benchmark with the maximum
number of symbolic inputs such that all runs terminate in less
than an hour, covering the same obligations, then we compared
performance. We used 4 symbolic inputs for ApachiCLI,
Replace, and Siena, 5 symbolic inputs for NanoXML and
Schedule, and 2, 11, and 9 symbolic inputs for PrintTokens,
TCAS, and WBS, respectively. Also, an experiment consists of
three consecutive runs of an approach on a given benchmark to
eliminate any cache effect. We repeated each experiment three
times, and computed the average time for the last run in each
experiment Tbl. II together with other information. For each
benchmark and analysis, the table shows the total number of
paths explored (paths), the number of successful code merges
by JR (merges), the total number of solver queries (# queries),

8

TABLE II: Performance of generating test inputs using SPF versus JR. The table shows the number of paths, successful path
merging, solver queries, tests, as well as query solving time, average query time, total execution time, and time overhead.

benchmark analysis paths merges # queries tests solving time query avg total time

ApachiCLI SPF 7278 - 139262 8 1619.9 0.012 1737.9
JR 1950 7296 4286 8 389 0.091 412.2

NanoXML SPF 38923 - 91554 46 1242.2 0.014 1391.6
JR 6148 1602 19060 44 391.6 0.021 428

WBS SPF 13824 - 27646 12 329.9 0.012 349.9
JR 1 35 7 6 8.9 1.276 11.7

TCAS SPF 200 - 1256 21 15.2 0.012 17.4
JR 1 4 17 16 12.9 0.761 15.6

Schedule SPF 16807 - 33612 7 386.8 0.012 415.9
JR 16807 0 33612 7 395.1 0.012 427.8

Siena SPF 20736 - 52780 6 645.3 0.012 698.9
JR 20736 0 52780 6 645.9 0.012 703.3

PrintTokens SPF 489 - 10616 43 134.3 0.013 141.7
JR 393 451 9179 43 176 0.019 186.26

Replace SPF 1314 - 11304 27 123.8 0.011 131.8
JR 506 252 35136 36 2328.4 0.066 2358.7

the number of generated test inputs (tests), the average time in
seconds spent on generating the equivalent SMT query, solving
and examining the returned solver model (solving time), the
average time in seconds per query (query avg), and finally,
the average total analysis time in seconds (total time).

In Tbl. II we see that JR has significantly improved per-
formance while generating fewer test inputs on four out of
six benchmarks. This is observable on ApachiCLI, NanoXML,
TCAS, and WBS. For ApachiCLI and NanoXML, reducing the
number of explored paths (from 7278 to 1950) in ApachiCLI,
and from (38923 to 6148) in NanoXML. We also observe that
despite the average query time is up, it generally did not affect
the overall performance of JR. Thus, the relatively expensive
average solving time per query when comparing these two
benchmarks (1.276s in WBS and 0.761s in TCAS) with the
remaining benchmarks (less than 0.1s). This is expected due to
the complexity of the constructed queries describing all paths.
Interestingly, despite the large overhead, JR is still similar to
or much faster than SPF.

For Siena and Schedule, JR has no successful merges; thus,
the number of execution paths remains the same as SPF’s.
These two benchmarks suggest that the overhead needed for
BTIG setup and generation of test inputs is less than 3%.

Replace’s results fall into the other spectrum, where path
merging is not beneficial as opposed to SPF. In Tbl. II, we
see that SPF is 18 times faster than JR. That is, despite the
reduction in the number of paths (1314 to 506 from SPF to JR),
the overall running time increased (from 131.8s to 1810.7s).
On analyzing this benchmark further we found that JR with
the BTIG support yields an overhead of 30.26% over plain
JR. This result is attributed to both a significant increase in
the number of queries (from 11304 to 35163) as well as an
increase in the overhead per query (from 0.051s to 0.066s).

In general, results from PrintTokens and Replace show
that the performance of path merging can fluctuate widely.
JR is faster than SPF by factors of 4x, 3x, 30x, 1.11x on
ApachiCLI, NanoXML, WBS, and TCAS, while SPF is faster
than JR by factors of 1.03x, 1.01x, 1.3x, 18x on Schedule,
Siena, PrintTokens and Replace. The results suggest that the
fluctuations are more related to the general performance of

TABLE III: Performance of SPF and JR test input generation.
All times are in seconds.

benchmark mode paths merges queries tests

ApachiCLI SPF 12962 0 277540 12
JR 10144 38718 25664 14

NanoXML SPF 94190 0 223436 52
JR 40733 10681 126496 53

WBS SPF 138864 0 277744 12
JR 1 65 6 5

TCAS SPF 35532 0 254222 1
JR 1 8 31 1

Schedule SPF 135395 0 270818 8
JR 134539 0 269106 8

Siena SPF 104473 0 265938 10
JR 104307 0 265516 10

PrintTokens SPF 11921 0 249446 48
JR 5866 5504 102361 53

Replace SPF 51002 0 285516 16
JR 5514 39 62770 21

JR than it is related to BTIG extension 2. This points to
the importance of future research that defines and measures
heuristics to distinguish useful path-merging opportunities.

B. RQ2: JR’s Coverage Effectiveness Over Time

To answer the second research question, we changed the
number of symbolic variables so that neither SPF nor JR
can finish exploring all paths or achieving 100% branch
coverage in 1 hour. We used a larger number of symbolic
inputs to increase the chances of exploring new paths and
thus cover more code. Specifically, we used the maximum
existing configured symbolic inputs for ApachCLI, NanoXML,
PrintTokens, Replace, Seina, and Schedule, 9, 9, 8, 11, 9,
and 15. As WBS and TCAS describe reactive components
with any number of iterations, we used the same number of
symbolic inputs previously used in [1], 15 and 24. Results
of this experiment are shown in Tbl. III, while accumulation
of coverage over time is shown in Fig. 15, and finally,
complementary coverage information is shown in Tbl. IV.

In terms of the achievement of coverage over time, we ob-
serve that for benchmarks where path-merging is not possible

2Same results were found between JR to JR+BTIG but omitted for space.

9

(Siena and Schedule), the difference in obligation coverage
is insignificant (Fig. 7, and Fig. 8). The minor performance
difference, is due to JR’s static analysis. For benchmarks where
path merging is beneficial, in terms of reducing the overall
running time, such as in ApachiCLI and NanoXML in Tbl. II,
we observe faster obligation coverage (in ApacheCLI, Fig. 10),
with more obligation coverage collected (in NanoXML Fig. 9).

On the other hand, for benchmarks where path merging is
not useful, i.e., it did not reduce the overall running time (such
as in Replace and PrintToken in Tbl. II), we observe that in
PrintTokens (Fig. 12), and in Replace (Fig. 11), JR covers new
branches sometimes much slower, particularly in Replace.

Finally, we see mixed but also positive results on bench-
marks where the entire code is merged (in the case of WBS
and TCAS), making path merging similar to model checking.
More precisely, we observe that while WBS shows no better
obligation coverage (Fig. 13), TCAS shows a single additional
coverage found by JR (Fig. 14). This suggests that while
collapsing the entire code into a single constraint is expensive
(Fig. III), there is always the benefit of comprehensively ex-
pressing the entire behavior of the code, allowing JR to cover
hard obligations. The above results suggest that achieving
additional coverage is more dependent on the performance of
the baseline JR rather than on BTIG extension. In general, we
conclude that our extension is able to collect more coverage
when baseline JR is performing better than baseline SPF, and
that, in general, the performance of path merging is dependent
on the code structure of the benchmark it runs on.

C. RQ3: Uniqueness of SE & PM-SE Test Inputs
To evaluate whether SPF and JR are complementary in

BTIG, consider Table. IV, which shows the common coverage
(common) that both SPF and JR were able to reach, and the
number of extra coverage elements achieved by SPF (SPF
extras) and JR (JR extras). We can see that SPF and JR
both can reach complementary obligations suggesting that
both techniques, to some extent, have their own advantages
in generating branch-adequate test inputs. It is important
to observe that while the number of achieved coverage is
important, reaching a few hard-to-find obligations is non-
trivial. The latter is what we believe JR was able to achieve.

Finally, to investigate the number of test inputs generated
by both techniques, we can see in Tbl. II that JR was able
to produce fewer test inputs for the same amount of branch
coverage for three programs (NanoXML, WBS, and TCAS),
and particularly them 50% for WBS. On the other hand, SPF
is able to produce a smaller number of test inputs for a single
program (Replace). This result indicates that PM-SE is likely
to generate fewer test inputs when used for branch coverage.

VI. RELATED WORK

Symbolic execution has a wide range of applications includ-
ing test input generation [10], [11], program and specification
repair [12], [13], equivalence checking [14], [15], vulnerabil-
ity finding [16], [17], invariant discovery [18], and protocol
correctness checking [19]. In general, automatic testcase gen-
eration is a broad area of research most recently surveyed by
Anand et al. [20].

TABLE IV: Complementary Coverage of SPF and JR

bench common SPF extras JR extras
ApachiCLI 89 0 0
NanoXML 133 0 7
WBS 67 0 0
TCAS 83 0 1
Schedule 61 0 0
Siena 39 0 0
PrintTokens 185 4 0
Replace 99 36 1

At one end of a spectrum are approaches that completely
explore an execution space; this includes symbolic execu-
tion [21], [22] and model checking [23]. In fact, automatic
testcase generation has been a prime motivating application of
symbolic execution since the early works of the 1970s [24]–
[26]. Symbolic execution engines commonly explore one
execution path at a time, so for instance, creating a test case
from one satisfying assignment for each path builds a suite
with path coverage. These techniques are ideal for relatively
small programs whose execution tree can be explored entirely;
however, for more computationally challenging programs, the
number of execution paths can grow impractically large, so it
is necessary to be more selective somehow.

Concolic execution [10], [27] and fuzzing [28], [29] tools
typically give up on completeness, as it is in many cases im-
practical to enumerate all execution paths to generate relevant
coverage goals. Concolic execution [10], [11] is a form of
symbolic execution that generates a new concrete input from
a previous one by finding a solution to a path condition prefix
and a negated branch condition. One advantage of concolic
execution is that it is easily mixed with fast random input
mutations, for instance, to search for inputs that trigger crashes
(fuzzing) [16], [30]. This can be seen as automatic test input
generation with a simple automatic test oracle.

Path-merging symbolic execution [1], [31]–[33] is a com-
plete approach that tries to alleviate the path explosion problem
of symbolic execution by merging paths during exploration. In
path merging, instead of symbolically executing all program
execution paths, path merging collapses code regions by
expressing their behavior using logical constraints. This allows
path merging to explore fewer execution paths, often resulting
in a performance improvement.

VII. ACKNOWLEDGMENT

This work was partially funded by an internship at JPF’s
Google Summer of Code 2020, as well as, the National
Science Foundation under grant 1563920.

VIII. CONCLUSION AND FUTURE WORK

This paper showed how coverage and test inputs can be
generated for path-merged symbolic execution. We applied this
technique to create test inputs for bytecode branch coverage.
We implemented the technique as an extension to Java Ranger.
Experiments showed mixed complementary results, indicating
the importance of both techniques

In the future, we plan to investigate and create heuristics that
use path merging when it can yield overall better performance.

10

Fig. 7: Siena Obligation Coverage Fig. 8: Schedule Obligation Coverage

Fig. 9: NanoXML Obligation Coverage Fig. 10: ApacheCLI Obligation Coverage

Fig. 11: Replace Obligation Coverage Fig. 12: PrintTokens Obligation Coverage

Fig. 13: WBS Obligation Coverage

Fig. 14: TCAS Obligation Coverage

Fig. 15: Obligation coverage on all benchmarks

11

REFERENCES

[1] V. Sharma, S. Hussein, M. W. Whalen, S. McCamant, and W. Visser,
“Java ranger: Statically summarizing regions for efficient symbolic
execution of java,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2020. New York,
NY, USA: Association for Computing Machinery, 2020, p. 123–134.
[Online]. Available: https://doi.org/10.1145/3368089.3409734

[2] H. Kelly J., V. Dan S., C. John J., and R. Leanna K., “A practical tutorial
on modified condition/decision coverage,” Tech. Rep., 2001.

[3] P. Frankl and E. Weyuker, “An applicable family of data flow testing
criteria,” IEEE Transactions on Software Engineering, vol. 14, no. 10,
pp. 1483–1498, 1988.

[4] C. S. Păsăreanu, W. Visser, D. Bushnell, J. Geldenhuys, P. Mehlitz,
and N. Rungta, “Symbolic pathfinder: integrating symbolic execution
with model checking for java bytecode analysis,” Automated Software
Engineering, vol. 20, no. 3, pp. 391–425, Sep 2013. [Online]. Available:
https://doi.org/10.1007/s10515-013-0122-2

[5] S. Hussein, Q. Yan, S. McCamant, V. Sharma, and M. Whalen, “JAVA
RANGER: Supporting string and array operations (competition contribu-
tion),” in Proc. TACAS (2), ser. LNCS 13994. Springer, 2023.

[6] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-
niques, and Tools. USA: Addison-Wesley Longman Publishing Co.,
Inc., 1986.

[7] P. Tu and D. Padua, “Efficient building and placing of gating
functions,” in Proceedings of the ACM SIGPLAN 1995 Conference on
Programming Language Design and Implementation, ser. PLDI ’95.
New York, NY, USA: Association for Computing Machinery, 1995, p.
47–55. [Online]. Available: https://doi.org/10.1145/207110.207115

[8] “Java Ranger GitHub Repository,” https://github.com/vaibhavbsharma/
java-ranger.git, 2023.

[9] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in Tools
and Algorithms for the Construction and Analysis of Systems, C. R.
Ramakrishnan and J. Rehof, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 337–340.

[10] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated
random testing,” in Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’05.
New York, NY, USA: ACM, 2005, pp. 213–223. [Online]. Available:
http://doi.acm.org/10.1145/1065010.1065036

[11] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic
unit testing engine for c,” in Proceedings of the 10th European
Software Engineering Conference Held Jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
ESEC/FSE-13. New York, NY, USA: ACM, 2005, pp. 263–272.
[Online]. Available: http://doi.acm.org/10.1145/1081706.1081750

[12] T. Nguyen, M. B. Dwyer, and W. Visser, “Symlnfer: Inferring program
invariants using symbolic states,” in 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), Oct 2017, pp.
804–814.

[13] S. Hussein, S. Rayadurgam, S. McCamant, V. Sharma, and M. Heimdahl,
“Counterexample-guided inductive repair of reactive contracts,” in
Proceedings of the IEEE/ACM 10th International Conference on Formal
Methods in Software Engineering, ser. FormaliSE ’22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 46–57. [Online].
Available: https://doi.org/10.1145/3524482.3527650

[14] D. A. Ramos and D. R. Engler, “Practical, low-effort equivalence
verification of real code,” in Proceedings of the 23rd International
Conference on Computer Aided Verification, ser. CAV’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 669–685. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2032305.2032360

[15] V. Sharma, K. Hietala, and S. McCamant, “Finding substitutable
binary code for reverse engineering by synthesizing adapters,” in 2018
IEEE 11th International Conference on Software Testing, Verification
and Validation (ICST). Los Alamitos, CA, USA: IEEE Computer
Society, apr 2018, pp. 150–160. [Online]. Available: https://doi.
ieeecomputersociety.org/10.1109/ICST.2018.00024

[16] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
Fuzzing Through Selective Symbolic Execution,” in 23rd Annual Net-
work and Distributed System Security Symposium, NDSS 2016, San
Diego, California, USA, February 21-24, 2016. San Diego, CA: The
Internet Society, February 2016, pp. 1–16.

[17] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Krügel, and G. Vigna,
“SOK: (state of) the art of war: Offensive techniques in binary

analysis,” in IEEE Symposium on Security and Privacy, SP 2016, San
Jose, CA, USA, May 22-26, 2016. IEEE Computer Society, 2016, pp.
138–157. [Online]. Available: https://doi.org/10.1109/SP.2016.17

[18] L. Zhang, G. Yang, N. Rungta, S. Person, and S. Khurshid,
“Feedback-driven dynamic invariant discovery,” in Proceedings of the
2014 International Symposium on Software Testing and Analysis, ser.
ISSTA 2014. New York, NY, USA: Association for Computing
Machinery, 2014, p. 362–372. [Online]. Available: https://doi.org/10.
1145/2610384.2610389

[19] W. Sun, L. Xu, and S. Elbaum, “Improving the cost-effectiveness
of symbolic testing techniques for transport protocol implementations
under packet dynamics,” in Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
2017. New York, NY, USA: ACM, 2017, pp. 79–89. [Online].
Available: http://doi.acm.org/10.1145/3092703.3092706

[20] S. Anand, E. K. B. andTsong Yueh Chen, J. A. Clark, M. B.
Cohen, W. Grieskamp, M. Harman, M. J. Harrold, and P. McMinn,
“An orchestrated survey of methodologies for automated software test
case generation,” J. Syst. Softw., vol. 86, no. 8, pp. 1978–2001, 2013.
[Online]. Available: https://doi.org/10.1016/j.jss.2013.02.061

[21] M. Staats and C. Păsăreanu, “Parallel symbolic execution for structural
test generation,” in Proceedings of the 19th International Symposium on
Software Testing and Analysis, ser. ISSTA ’10. New York, NY, USA:
Association for Computing Machinery, 2010, p. 183–194. [Online].
Available: https://doi.org/10.1145/1831708.1831732

[22] D. Trabish, A. Mattavelli, N. Rinetzky, and C. Cadar,
“Chopped symbolic execution,” in Proceedings of the 40th International
Conference on Software Engineering, ser. ICSE ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 350–360.
[Online]. Available: https://doi.org/10.1145/3180155.3180251

[23] S. Rayadurgam and M. Heimdahl, “Coverage based test-case generation
using model checkers,” in Proceedings. 8th Annual IEEE International
Conference On the Engineering of Computer-Based Systems-ECBS
2001. CA, USA: IEEE Computer Society, 2001, pp. 83–91.

[24] R. S. Boyer, B. Elspas, and K. N. Levitt, “SELECT - a formal
system for testing and debugging programs by symbolic execution,” in
Proceedings of the International Conference on Reliable Software 1975,
Los Angeles, California, USA, April 21-23, 1975, M. L. Shooman and
R. T. Yeh, Eds. New York, NY, USA: ACM, 1975, pp. 234–245.
[Online]. Available: https://doi.org/10.1145/800027.808445

[25] J. C. King, “Symbolic execution and program testing,” Commun.
ACM, vol. 19, no. 7, pp. 385–394, 1976. [Online]. Available:
http://doi.acm.org/10.1145/360248.360252

[26] L. A. Clarke, “A system to generate test data and symbolically execute
programs,” IEEE Trans. Software Eng., vol. 2, no. 3, pp. 215–222,
1976. [Online]. Available: https://doi.org/10.1109/TSE.1976.233817

[27] K. Luckow, M. Dimjašević, D. Giannakopoulou, F. Howar, M. Isberner,
T. Kahsai, Z. Rakamarić, and V. Raman, “Jdart: A dynamic symbolic
analysis framework,” in Tools and Algorithms for the Construction
and Analysis of Systems, M. Chechik and J.-F. Raskin, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2016, pp. 442–459.

[28] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based grey-
box fuzzing as markov chain,” IEEE Transactions on Software Engi-
neering, vol. 45, no. 5, pp. 489–506, 2019.

[29] R. Padhye, C. Lemieux, and K. Sen, JQF: Coverage-Guided
Property-Based Testing in Java. New York, NY, USA: Association
for Computing Machinery, 2019, p. 398–401. [Online]. Available:
https://doi.org/10.1145/3293882.3339002

[30] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A practical
concolic execution engine tailored for hybrid fuzzing,” in 27th
USENIX Security Symposium, USENIX Security 2018, Baltimore, MD,
USA, August 15-17, 2018, W. Enck and A. P. Felt, Eds. Berkeley, CA,
USA: USENIX Association, 2018, pp. 745–761. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/yun

[31] T. Hansen, P. Schachte, and H. Søndergaard, “State joining and split-
ting for the symbolic execution of binaries,” in Runtime Verification,
S. Bensalem and D. A. Peled, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 76–92.

[32] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state merg-
ing in symbolic execution,” in Proceedings of the 33rd ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’12. New York, NY, USA: ACM, 2012, pp. 193–204.

[33] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing
symbolic execution with veritesting,” in Proceedings of the 36th
International Conference on Software Engineering, ser. ICSE 2014.
New York, NY, USA: ACM, 2014, pp. 1083–1094. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568293

View publication stats

https://doi.org/10.1145/3368089.3409734
https://doi.org/10.1007/s10515-013-0122-2
https://doi.org/10.1145/207110.207115
https://github.com/vaibhavbsharma/java-ranger.git
https://github.com/vaibhavbsharma/java-ranger.git
http://doi.acm.org/10.1145/1065010.1065036
http://doi.acm.org/10.1145/1081706.1081750
https://doi.org/10.1145/3524482.3527650
http://dl.acm.org/citation.cfm?id=2032305.2032360
https://doi.ieeecomputersociety.org/10.1109/ICST.2018.00024
https://doi.ieeecomputersociety.org/10.1109/ICST.2018.00024
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1145/2610384.2610389
https://doi.org/10.1145/2610384.2610389
http://doi.acm.org/10.1145/3092703.3092706
https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1145/1831708.1831732
https://doi.org/10.1145/3180155.3180251
https://doi.org/10.1145/800027.808445
http://doi.acm.org/10.1145/360248.360252
https://doi.org/10.1109/TSE.1976.233817
https://doi.org/10.1145/3293882.3339002
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
http://doi.acm.org/10.1145/2568225.2568293
https://www.researchgate.net/publication/372311330

	Introduction
	Background and a Motivating Example
	Background
	Motivating Example

	PM-SE Obligation Adequate Test Input Generation
	Overview of the Approach
	Algorithm Details

	Branch Coverage of Three Address Code
	Expanding Conditions
	Marking Obligations
	Collecting Test Inputs

	Evaluation
	RQ1: JR's Performance Overhead
	RQ2: JR's Coverage Effectiveness Over Time
	RQ3: Uniqueness of SE & PM-SE Test Inputs

	Related Work
	Acknowledgment
	Conclusion and Future Work
	References

