
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/362181650

Counterexample-guided inductive repair of reactive contracts

Conference Paper · May 2022

DOI: 10.1145/3524482.3527650

CITATION

1
READS

36

5 authors, including:

Soha Hussein

University of Minnesota Twin Cities

11 PUBLICATIONS 84 CITATIONS

SEE PROFILE

Sanjai Rayadurgam

University of Minnesota Twin Cities

67 PUBLICATIONS 1,056 CITATIONS

SEE PROFILE

Stephen McCamant

University of Minnesota Twin Cities

75 PUBLICATIONS 4,124 CITATIONS

SEE PROFILE

Vaibhav Sharma

University of Minnesota Twin Cities

21 PUBLICATIONS 208 CITATIONS

SEE PROFILE

All content following this page was uploaded by Soha Hussein on 22 July 2023.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/362181650_Counterexample-guided_inductive_repair_of_reactive_contracts?enrichId=rgreq-e6ceb1bf5e5e482a6409f129c1a5d10d-XXX&enrichSource=Y292ZXJQYWdlOzM2MjE4MTY1MDtBUzoxMTQzMTI4MTE3NjEwODA4OEAxNjkwMDMyOTQxNDg5&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/362181650_Counterexample-guided_inductive_repair_of_reactive_contracts?enrichId=rgreq-e6ceb1bf5e5e482a6409f129c1a5d10d-XXX&enrichSource=Y292ZXJQYWdlOzM2MjE4MTY1MDtBUzoxMTQzMTI4MTE3NjEwODA4OEAxNjkwMDMyOTQxNDg5&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e6ceb1bf5e5e482a6409f129c1a5d10d-XXX&enrichSource=Y292ZXJQYWdlOzM2MjE4MTY1MDtBUzoxMTQzMTI4MTE3NjEwODA4OEAxNjkwMDMyOTQxNDg5&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Soha-Hussein-2?enrichId=rgreq-e6ceb1bf5e5e482a6409f129c1a5d10d-XXX&enrichSource=Y292ZXJQYWdlOzM2MjE4MTY1MDtBUzoxMTQzMTI4MTE3NjEwODA4OEAxNjkwMDMyOTQxNDg5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Soha-Hussein-2?enrichId=rgreq-e6ceb1bf5e5e482a6409f129c1a5d10d-XXX&enrichSource=Y292ZXJQYWdlOzM2MjE4MTY1MDtBUzoxMTQzMTI4MTE3NjEwODA4OEAxNjkwMDMyOTQxNDg5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Minnesota_Twin_Cities2?enrichId=rgreq-e6ceb1bf5e5e482a6409f129c1a5d10d-XXX&enrichSource=Y292ZXJQYWdlOzM2MjE4MTY1MDtBUzoxMTQzMTI4MTE3NjEwODA4OEAxNjkwMDMyOTQxNDg5&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Soha-Hussein-2?enrichId=rgreq-e6ceb1bf5e5e482a6409f129c1a5d10d-XXX&enrichSource=Y292ZXJQYWdlOzM2MjE4MTY1MDtBUzoxMTQzMTI4MTE3NjEwODA4OEAxNjkwMDMyOTQxNDg5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sanjai-Rayadurgam?enrichId=rgreq-e6ceb1bf5e5e482a6409f129c1a5d10d-XXX&enrichSource=Y292ZXJQYWdlOzM2MjE4MTY1MDtBUzoxMTQzMTI4MTE3NjEwODA4OEAxNjkwMDMyOTQxNDg5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sanjai-Rayadurgam?enrichId=rgreq-e6ceb1bf5e5e482a6409f129c1a5d10d-XXX&enrichSource=Y292ZXJQYWdlOzM2MjE4MTY1MDtBUzoxMTQzMTI4MTE3NjEwODA4OEAxNjkwMDMyOTQxNDg5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Minnesota_Twin_Cities2?enrichId=rgreq-e6ceb1bf5e5e482a6409f129c1a5d10d-XXX&enrichSource=Y292ZXJQYWdlOzM2MjE4MTY1MDtBUzoxMTQzMTI4MTE3NjEwODA4OEAxNjkwMDMyOTQxNDg5&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sanjai-Rayadurgam?enrichId=rgreq-e6ceb1bf5e5e482a6409f129c1a5d10d-XXX&enrichSource=Y292ZXJQYWdlOzM2MjE4MTY1MDtBUzoxMTQzMTI4MTE3NjEwODA4OEAxNjkwMDMyOTQxNDg5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephen-Mccamant?enrichId=rgreq-e6ceb1bf5e5e482a6409f129c1a5d10d-XXX&enrichSource=Y292ZXJQYWdlOzM2MjE4MTY1MDtBUzoxMTQzMTI4MTE3NjEwODA4OEAxNjkwMDMyOTQxNDg5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephen-Mccamant?enrichId=rgreq-e6ceb1bf5e5e482a6409f129c1a5d10d-XXX&enrichSource=Y292ZXJQYWdlOzM2MjE4MTY1MDtBUzoxMTQzMTI4MTE3NjEwODA4OEAxNjkwMDMyOTQxNDg5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Minnesota_Twin_Cities2?enrichId=rgreq-e6ceb1bf5e5e482a6409f129c1a5d10d-XXX&enrichSource=Y292ZXJQYWdlOzM2MjE4MTY1MDtBUzoxMTQzMTI4MTE3NjEwODA4OEAxNjkwMDMyOTQxNDg5&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephen-Mccamant?enrichId=rgreq-e6ceb1bf5e5e482a6409f129c1a5d10d-XXX&enrichSource=Y292ZXJQYWdlOzM2MjE4MTY1MDtBUzoxMTQzMTI4MTE3NjEwODA4OEAxNjkwMDMyOTQxNDg5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vaibhav-Sharma-37?enrichId=rgreq-e6ceb1bf5e5e482a6409f129c1a5d10d-XXX&enrichSource=Y292ZXJQYWdlOzM2MjE4MTY1MDtBUzoxMTQzMTI4MTE3NjEwODA4OEAxNjkwMDMyOTQxNDg5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vaibhav-Sharma-37?enrichId=rgreq-e6ceb1bf5e5e482a6409f129c1a5d10d-XXX&enrichSource=Y292ZXJQYWdlOzM2MjE4MTY1MDtBUzoxMTQzMTI4MTE3NjEwODA4OEAxNjkwMDMyOTQxNDg5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Minnesota_Twin_Cities2?enrichId=rgreq-e6ceb1bf5e5e482a6409f129c1a5d10d-XXX&enrichSource=Y292ZXJQYWdlOzM2MjE4MTY1MDtBUzoxMTQzMTI4MTE3NjEwODA4OEAxNjkwMDMyOTQxNDg5&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vaibhav-Sharma-37?enrichId=rgreq-e6ceb1bf5e5e482a6409f129c1a5d10d-XXX&enrichSource=Y292ZXJQYWdlOzM2MjE4MTY1MDtBUzoxMTQzMTI4MTE3NjEwODA4OEAxNjkwMDMyOTQxNDg5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Soha-Hussein-2?enrichId=rgreq-e6ceb1bf5e5e482a6409f129c1a5d10d-XXX&enrichSource=Y292ZXJQYWdlOzM2MjE4MTY1MDtBUzoxMTQzMTI4MTE3NjEwODA4OEAxNjkwMDMyOTQxNDg5&el=1_x_10&_esc=publicationCoverPdf

Counterexample-Guided Inductive Repair of Reactive Contracts
Soha Hussein∗
soha@umn.edu

University of Minnesota
USA

Sanjai Rayadurgam
rsanjai@umn.edu

University of Minnesota
USA

Stephen McCamant
mccamant@cs.umn.edu
University of Minnesota

USA

Vaibhav Sharma
vaibhav@umn.edu

University of Minnesota
USA

Mats Heimdahl
heimdahl@umn.edu

University of Minnesota
USA

ABSTRACT
Executable implementations are ultimately the only dependable
representations of a software component’s behavior. Incorporat-
ing such a component in a rigorous model-based development of
reactive systems poses challenges since a formal contract over its
behaviors will have to be crafted for system verification. Simply
hypothesizing a contract based on informal descriptions of the com-
ponent is problematic: if it is too weak, we may fail in verifying
valid system-level contracts; if it is too strong or simply erroneous,
the system may fail in operation. Thus, establishing a valid and
strong enough contract is crucially important.

In this paper, we propose to repair the invalid hypothesized con-
tract by replacing one or more of its sub-expressions with newly
composed expressions, such that the new contract holds over the
implementation. To this effect, we present a novel, sound, semanti-
cally minimal, and under reasonable assumptions terminating, and
complete counterexample-guided general-purpose algorithm for
repairing contracts. We implemented and evaluated our technique
on more than 4,000 mutants with various complexities generated
from 29 valid contracts for 4 non-trivial Java reactive components.
Results show a successful repair rate of 81.51%, with 20.72% of the
repairs matching the manually written contracts and 60.79% of the
repairs describing non-trivial valid contracts.

ACM Reference Format:
Soha Hussein, Sanjai Rayadurgam, Stephen McCamant, Vaibhav Sharma,
and Mats Heimdahl. 2023. Counterexample-Guided Inductive Repair of
Reactive Contracts. In Proceedings of ACM Conference (FormaliSE’22). ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3524482.3527650

∗Also with Ain Shams University, Egypt
Lecturer on leave of absence
soha.hussein@cis.asu.edu.eg.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FormaliSE’22, May 2022, Pittsburgh, PA, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9287-7/22/05. . . $15.00
https://doi.org/10.1145/3524482.3527650

1 INTRODUCTION
Computer-controlled systems are typically developed by integrat-
ing multiple reactive components. Reactive components are imple-
mented to indefinitely execute a top-level control loop. Each it-
eration of the loop is a reactive step function in which the latest
input is consumed, the component’s state is updated, and a fresh
output is produced. These components are sometimes developed
by third-parties and the actual component delivered may be the
only authentic representation of its behavior. Specifically, they
may be lacking reliable requirements (or contracts) defining the as-
sumptions made on a component’s operating environment and the
component’s guaranteed behavior. Integrating such components
in rigorous software development (such as in formal model-based
development [7, 41]) is challenging, as one has to hypothesize their
formal contracts based on the executable component and the avail-
able informal descriptions. This approach leads to two problems. If
the hypothesized contract is too weak, we may fail to verify system-
level contracts and subsequently discard a perfectly good compo-
nent because we could not establish a more accurate (a tighter)
contract. If the hypothesized contract is erroneous or too strong,
we may succeed with the system-level verification, but the system
may fail in operation since the component does not meet its hy-
pothesized contract. Thus, establishing a valid and tight enough
contract – one that does not over-approximate the component be-
havior to a point where verification of system-level properties fails
– is crucially important.

Integrating executable components with unknown contracts into
a system architecture is, by nature, an iterative process. It starts
with a hypothesized formal component contract against which the
component is checked. If it does not satisfy the hypothesized con-
tract, we may have to modify the hypothesized contract until we
discover one that does hold over the component. Hopefully, this
new contract will allow for verification of system-level contracts
(the contract is strong enough); if not, we may have to find a differ-
ent component, re-architect the system, or relax the system-level
contracts to reflect the reality of the components available [42].
Either way, an approach and a tool that allows an analyst to hy-
pothesize a component contract, check if the contract is met by the
low-level code implementing the component, and, if not, have an
automated support to help “repair” the contract, would be helpful.
In general terms, repairing a contract is the process of replacing one
or more sub-expressions in the contract with one or more newly
composed expressions, such that the new contract can be checked
to be valid over the implementation.

https://orcid.org/0000-0002-5071-6811
https://orcid.org/0000-0001-9877-8926
https://doi.org/10.1145/3524482.3527650
https://doi.org/10.1145/3524482.3527650

FormaliSE’22, May 2022, Pittsburgh, PA, USA Soha Hussein, Sanjai Rayadurgam, Stephen McCamant, Vaibhav Sharma, and Mats Heimdahl

Existing approaches do not directly address the problem of re-
pairing a hypothesized contract. Tools that repair unrealizable spec-
ifications [20, 24], by definition, address defective contracts that no
implementation can meet. Invariant discovery tools [12, 28, 43], on
the other hand, generate program invariants, typically restricted
to a predefined grammar, that cannot be directly related to users’
hand-written contracts.

In this paper, we present a novel sound, semantically minimal,
terminating, and complete general-purpose algorithm for repairing
contracts, assuming effective terminating witness-finding proce-
dures. Also, we present its instantiation to repair contracts of reac-
tive components in a tool named ContractDR. The implementation
is also sound and terminating but boundedly minimal and complete.

ContractDR[1] uses a Counterexample-Guided Inductive Repair
(CEGIR) algorithm that alternates between bounded and unbounded
model-checking (both constrained by a time budget). The input is a
hypothesized contract and a Java bytecode implementation of the
executable reactive component. The process starts by translating
the component’s implementation into a dataflow representation
amenable to model-checking. If the hypothesized contract was in-
valid with respect to the implementation, our technique attempts
to repair it. To do that, we punch holes (identifying repair points) in
the given contract to be repaired. Then we repeatedly find candidate
contracts, possible repaired contracts that are not yet checked to be
valid over the implementation. Once our technique finds an initial
repaired contract, the first validated contract over the implemen-
tation, it attempts to find a tighter repaired contract. In general,
our technique can find multiple repaired contracts, candidate con-
tracts that were checked and found valid over the implementation.
The goal of our technique is to find a minimal repaired contract, a
repaired contract that cannot be further tightened.

To generate replacement expressions needed for the repair, we
use the Sketching [36] technique. Generally, sketching is a program
synthesis technique that synthesizes pieces of the partially detailed
program using another implementation as a reference. Our usage
for the sketch technique for repairing contracts is similar, but for
synthesizing a partially detailed contract, as opposed to a partially
detailed program; our process tries to synthesize partial contracts
using the component’s implementation as a reference.

In a previous short paper [17], we described an overview of
our repair approach and evaluated classes of repairs of a single
benchmark. In this paper, we present our general-purpose repair
algorithm and prove that it is sound, terminating, complete, and
is generating semantically minimal repairs. We also describe how
we instantiated it for repairing contracts of reactive components
and the limitation for the instantiation. Finally, we present the
results of repairing over 4,000 hypothesized contracts, obtained
from 29 valid ones, spanning four non-trivial Java implementations
of reactive components. In our evaluation, we answer research
questions about the performance of the underlying tool, the effect
of directly repairing the faulty sub-expression, the impact of a poor
hypothesized contract, and finally, the effect of the complexity of
the component’s implementation on the repairs. Results show that
our technique has a successful repair rate of 81.51%, with 20.72% of
the repairs matching the manually written contracts and a further
60.79% of the repairs describing non-trivial valid contracts.

2 MOTIVATING EXAMPLE
Consider a system level contract of an infusion pump—the Generic
Patient Controlled Analgesia pump (GPCA) [27]:
Requirement 59: “If the estimated remaining drug volume drops
below the empty-threshold during infusion, the infusion shall stop.”

formalized as (𝑂𝑛 ∧ 𝑇ℎ𝑒𝑟𝑎𝑝𝑦 ∧ 𝐸𝑚𝑝𝑡𝑦) → (𝑅𝑎𝑡𝑒 = 0). We will
consider two components in the GPCA architecture, the Alarm𝑐

component and the Infusion𝑐 , which collaborate to help meet the
GPCA requirement (REQ 59). The GPCA architecture allocates
the responsibility of detecting exceptional conditions and setting
the appropriate warning levels to the Alarm𝑐 : “If during infusion
the drug volume drops below the empty-threshold, the alarm shall
be set to 4. Formally, (𝑂𝑛 ∧ 𝑇ℎ𝑒𝑟𝑎𝑝𝑦 ∧ 𝐸𝑚𝑝𝑡𝑦) → (𝐴𝑙𝑎𝑟𝑚 = 4).
Finally, the drug flow is managed by the Infusion𝑐 : “If the system is
On, and the alarm level is 4, the infusion shall stop.”, formalized as
(𝑂𝑛 ∧𝐴𝑙𝑎𝑟𝑚 = 4) → (𝑅𝑎𝑡𝑒 = 0).

Given the component contracts, we can verify that the system
level contract (Requirement 59) holds. Now, assume that the actual
Alarm𝑐 component we are planning on using has been developed
by a third party. Suppose this component relied on is now obsolete
and implements: (𝑂𝑛 ∧𝑇ℎ𝑒𝑟𝑎𝑝𝑦 ∧ 𝐸𝑚𝑝𝑡𝑦) → (𝐴𝑙𝑎𝑟𝑚 = 5).

Clearly, integrating this component will (1) violate the Alarm𝑐

component contract and (2) lead to a violation of Requirement 59
since the infusion will not stop when it should. Through verifica-
tion of the bytecode, we can show that the desired contract is not
met; but, that is all we will know at this point. The question we will
face now is, can we repair our invalid but desirable hypothesized
contract (𝑂𝑛∧𝑇ℎ𝑒𝑟𝑎𝑝𝑦∧𝐸𝑚𝑝𝑡𝑦) → (𝐴𝑙𝑎𝑟𝑚 = 4), to better reflect
the actual behavior of the delivered bytecode? This will allow us to
modify our architecture to accommodate the component and still
meet our system-level requirement. Note that we are not interested
in generating just any invariant or contract related to our compo-
nent; it is likely that the contract we seek is closely related to our
hypothesized contract. Thus, the search for a repair (a modifica-
tion) of the hypothesized contract should take place in the space of
repairs syntactically close to the invalid hypothesized contract.

ContractDR attempts repairing parts of the hypothesized con-
tract of a single component (compositional repair of multiple con-
tracts is left for future work). ContractDR uses semantic minimal-
ity as a guiding principle to avoid non-useful weak formulas. To
see why, one possible contract repair to the assumed third-party
component of the Alarm𝑐 can be (𝑂𝑛 ∧ 𝑇ℎ𝑒𝑟𝑎𝑝𝑦 ∧ 𝐸𝑚𝑝𝑡𝑦) →
(𝐴𝑙𝑎𝑟𝑚 ≤ 5). Though the repair is valid for the component it
is not good enough for compositional verification. Generating
(𝑂𝑛 ∧ 𝑇ℎ𝑒𝑟𝑎𝑝𝑦 ∧ 𝐸𝑚𝑝𝑡𝑦) → (𝐴𝑙𝑎𝑟𝑚 = 5), is a more useful re-
pair since this will allow us to better understand our component
and allow us to modify the contract for the Infusion𝑐 so that we
can verify Requirement 59 (or discard the third-party component
and produce a new one meeting our original desired contract). For
this reason, our technique attempts to find semantically minimal
repairs rather than any repair.

3 RELATEDWORK
The closest previous work in repairing of specifications addressed
repairing unrealizable specifications to make them realizable [6, 9,
22, 24]. These tools make a specification realizable only by refining

Counterexample-Guided Inductive Repair of Reactive Contracts FormaliSE’22, May 2022, Pittsburgh, PA, USA

assumptions, which limits the set of starting specifications that can
be repaired. By comparison, our faulty specifications are usually
already realizable but are not realized by the available implementa-
tion and our repairs often require changes beyond adding assump-
tions. The algorithms we use are more closely inspired by program
repair [10, 19, 23, 25, 26]. Program repair, however, searches for
modifications to improve imperative software instead of changing
specifications. Our language of repair definitions is inspired by
sketching [36], a programming technique that allows programmers
to provide the framework and building blocks of a correct program,
leaving an automated synthesis approach to search for a way of
combining the pieces to create a correct final program. Sketch has
also been used in program repair [16, 21], while we use it here for
repairing specifications.

Invariant discovery is a technique for finding program proper-
ties such as function pre- and post-conditions and object invari-
ants [5, 12]. For example, Daikon [12] infers likely invariants by
instantiating templates over data from test executions, and uses
statistical tests to exclude over-fit properties. DIG [29] uses more
specialized algorithms to discover complex non-linear and array
properties. PIE [32] avoids the limitation of a fixed grammar by
using program synthesis and machine learning to suggest new
invariants. The quality of invariants can be improved with static
information [34], or by combining with automatic test-case gen-
eration [28, 30, 43]. The usage of counter-example test cases in
the latter tools is analogous to our counter-example guided induc-
tive approach. However, the goal of these tools is to generate as
many correct invariants as possible from a large grammar, whereas
ContractDR repairs a single candidate into a similar but correct
specification. In the evaluation section, we empirically show that
invariant discovery is insufficient for repairing contracts.

Another class of applications of invariant discovery is discov-
ering inductive (e.g., loop) invariants to prove a given functional
correctness property. Many approaches have been explored in-
cluding machine learning tools [14, 35], but template-based tech-
niques [37, 38] are the closest to our repair approach. The template
enumerates a finite but large set of possibilities which must be
explored efficiently. The requirements on an inductive invariant
can be formulated as a kind of optimality, but the details differ from
our minimality approach.

4 GENERAL-PURPOSE REPAIR ALGORITHM
Algorithm 1 finds a minimal repair, if one exists, to fix a contract
sketch 𝑠 for an implementation 𝑓 , where in our context, a sketch is
a partially specified contract. A repair is simply the values 𝑣 for the
holes (arguments) in the sketch 𝑠 such that 𝑠 (𝑣) is a contract for the
given implementation 𝑓 , i.e., all I/O behaviors exhibited by 𝑓 are
allowed by 𝑠 (𝑣). A repair is minimal if no other repair can result in
a stronger contract (one that disallows more I/O behaviors and is
still a contract for 𝑓 conforming to 𝑠). The descriptions below for
the variable names may be helpful for understanding:

• 𝐴 is a set of must-admit behaviors (I/O pairs).
• 𝐷 is a set of may-discard behaviors (I/O pairs).
• 𝑘 is a boolean indicating whether we have a known repair, i.e.,
we have found a repair.

Algorithm 1: General-purpose algorithm for finding repairs.

1 discover-repair
(
𝑓 : 𝐼 → 𝑂, 𝑠 : 𝐻 → 𝟚𝐼×𝑂 , 𝑣 : 𝐻

)
: 𝟚 × 𝐻

2 𝐴, 𝐷, 𝑘, 𝑣 ′ ← ∅, ∅,¬⊤, 𝑣
3 𝑞 ← _𝑏,𝑢1, 𝑢2 . 𝑏 ∈ 𝑠 (𝑢1) ∧ 𝑏 ∉ 𝑠 (𝑢2)
4 while ⊤ do
5 if 1∃?𝑖 ∈ 𝐼 . (𝑖, 𝑓 (𝑖)) ∉ 𝑠 (𝑣 ′) then 𝐴← 𝐴 ∪ {(𝑖, 𝑓 (𝑖))}
6 else if ∃?𝑑 ∈ 𝐼 ×𝑂 . 𝑞(𝑑, 𝑣 ′, 𝑣) ∧ 𝑘 then 𝐷 ← 𝐷 ∪ {𝑑}
7 else 𝑘, 𝑣 ← ⊤, 𝑣 ′
8 𝑝 ← _𝑢 . ∀𝑎 ∈ 𝐴 . 𝑎 ∈ 𝑠 (𝑢) ∧ ∀𝑑 ∈ 𝐷 . 𝑑 ∉ 𝑠 (𝑢)
9 if ∃?𝑢 ∈ 𝐻 . 𝑝 (𝑢) ∧ (𝑘 ⇒ ∃𝑥 . 𝑞(𝑥, 𝑣,𝑢)) then 𝑣 ′ ← 𝑢

10 else return 𝑘, 𝑣

• 𝑣 (when 𝑘 = ⊤) and 𝑣 ′ are the values for holes in the sketch from
a known repair and a new candidate respectively.

• 𝑞 is a predicate to check if 𝑢2 qualifies as a potentially tighter
candidate than 𝑢1 due to 𝑏; i.e., 𝑏 is a behavior disallowed by the
contract 𝑠 (𝑢2) but allowed by 𝑠 (𝑢1).

• 𝑝 is a predicate to check if a candidate 𝑢 precisely partitions
behaviors w.r.t. 𝐴 and 𝐷 ; i.e., every must-admit behavior, but no
may-discard behavior, is allowed by 𝑠 (𝑢).
The algorithm is invoked with an implementation 𝑓 , a sketch 𝑠

for its contract and an initial repair candidate 𝑣 such that 𝑠 (𝑣) is
the faulty contract in need of repair. It then repeatedly:
• First checks if there is an implementation behavior that is disal-
lowed by the candidate and if so adds it to the must-admit set
(line 5).

• If otherwise, next checks if there is a behavior disallowed by the
last known repair that is now allowed by the candidate and if so
adds it to the may-discard set (line 6).

• Otherwise, updates the known repair to be the candidate (line 7).
• Finally, if a potentially tighter candidate exists—one that sepa-
rates must-admit behaviors from may-discard behaviors and also
disallows some behavior allowed by the known repair—makes it
the candidate (line 9).

• If no such tighter candidate exists, returns the last known repair,
if any (line 10).

Soundness is guaranteed by the fact that the control-flow will
not reach line 7, where the known repair is updated, unless the
if-condition in line 5 is false, which ensures that the known repair,
𝑣 when 𝑘 = ⊤, will not result in any implementation behavior being
disallowed by the repaired spec 𝑠 (𝑣).

Minimality of the repair, if one is found, is guaranteed by the
facts that (i) control-flowwill not reach line 10,where the procedure
returns, unless the if-condition in line 9 is false, ensuring that there
is no tighter candidate separating the must-accept (𝐴) from the may-
discard (𝐷) behaviors, and (ii) any known repair, 𝑣 when 𝑘 = ⊤,
separates 𝐴 from 𝐷 , as explained below.

Initially the candidate 𝑣 ′ trivially separates A from D per line 2.
The definition of 𝑝 in line 8 and the if-condition in line 9 ensure
that any candidate 𝑣 ′ that is ever considered separates 𝐴 from 𝐷 at
the time of consideration in line 9. Therefore, when the loop begins

1The question mark after the existential quantifier is to indicate that a witness—value
for the quantified variable that makes the formula true—must be obtained, if one exists.
The use of the quantified variable in the "true" branch is thus justifiable.

FormaliSE’22, May 2022, Pittsburgh, PA, USA Soha Hussein, Sanjai Rayadurgam, Stephen McCamant, Vaibhav Sharma, and Mats Heimdahl

a new iteration at line 5, the candidate 𝑣 ′ separates𝐴 from 𝐷 . If the
condition in line 5 is true (i.e., candidate is not a repair) then the set
𝐴 is updated by adding a behavior exhibited by 𝑓 and so if there is
a known repair, 𝑣 when 𝑘 = ⊤, it will remain a separator of 𝐴 from
𝐷 . Otherwise, if the condition in line 6 is true (i.e., candidate is not
a tighter repair), then the set 𝐷 is updated by adding a behavior
that is disallowed by the known repair, 𝑣 when 𝑘 = ⊤, which will
again remain a separator of 𝐴 from 𝐷 . If neither condition is true,
then the candidate, which becomes the new known repair in line
7, allows all behaviors of 𝑓 which includes all of 𝐴, and is tighter
than the previous known repair and thus disallows any previously
disallowed behaviors which includes all of 𝐷 .

Termination is guaranteed if there are effective witness-finding
procedures for checking the existentially quantified formulas in the
three if-conditions and if the number of s-equivalent partitions of
the set of all I/O behaviors is finite. Two behaviors are considered
s-equivalent, if for every 𝑣 , either both are allowed or both are
disallowed by 𝑠 (𝑣). In particular, a finite𝐻 is sufficient to guarantee
finiteness of s-equivalent partitioning since no partition will be
considered more than once.

Completeness is guaranteed if the conditions for termination
hold since, if there is a repair 𝑢, then the procedure will not return
until a repair has been found, because till then 𝑘 ≠ ⊤ and the may-
discard set 𝐷 remains empty, ensuring that the repair 𝑢 satisfies
the existentially quantified formula in line 9 which will prevent
execution of the return statement on line 10.

4.1 Safety Properties of Dataflow Programs
The above algorithm can be instantiated for combinations of con-
tract and implementation logics for which witness-finding pro-
cedures to answer the existence-queries in the if-conditions are
possible. Of interest in the present work are reactive control sys-
tems for which implementations can be modeled as synchronous
dataflow programs and contracts as safety properties which must
hold at every logical time-step of the system’s execution.

A synchronous dataflow program is a (dependently-typed2) func-
tion Δ : ∀𝑛 ≥ 0 . Σ𝑛 → Θ𝑛 , that, given a sequence3 of stimuli
𝜎1 . . . 𝜎𝑛 as input, computes a sequence of responses \1 . . . \𝑛 as out-
put incrementally, i.e., the set of all sequences of stimulus-response
pairs resulting from its computation,
Π∗ ≜

⋃
𝑛≥0

{(𝜎1, \1) . . . (𝜎𝑛, \𝑛) ∈ (Σ × Θ)𝑛 | Δ(𝜎1 . . . 𝜎𝑛) = \1 . . . \𝑛}

is prefix-closed. Such a program is in effect a state-transition system
often expressed as a step function: 𝛿 : Θ × Σ → Θ along with a
pre-response \0 ∈ Θ. The program’s response at each step is de-
termined by the previous response4 and the stimulus at that step:
∀𝑖 > 0 . \𝑖 = 𝛿 (\𝑖−1, 𝜎𝑖).

Safety properties for such programs are predicates over response-
stimulus-response triples, 𝜙 : Θ×Σ×Θ→ 𝟚. The program satisfies
the property, i.e., Δ |= 𝜙 , if each contiguous such triple in every
computation of the program satisfies the predicate, i.e., ∀−→𝜋 ∈
Π∗ .
−→
𝜙
(−→𝜋)

, where, for a−→𝜋 = (𝜎1, \1) . . . (𝜎𝑛, \𝑛), we say,
−→
𝜙
(−→𝜋)

=

2The output type is a finite sequence whose length is determined by the input sequence.
3Separators between elements of a sequence are elided when there is no ambiguity.
4It is typical to distinguish the state (hidden) and output (visible) parts of the response,
and take only the state part as the step function’s first argument, but this distinction
is not relevant here.

2. Find
Initial Repair

no repair

Δ

Translate
Implementation

Find candidate
tighter repair

repair
found?

true

counter
example

Pr ← P0

candidate
found?

false

pr

is sd
tighter?

is
df valid
repair?

counter
example

false

false

Pr ← Pc

false

false

true

3. Find Minimal Repair

false
counter
example

true
true

Create
Sketch

PhE

S

1. Setup

A

A ∪ D
A ∪ D

Pc

Pc

Figure 1: Overview - Focusing on Find Minimal Repair. 𝐸,
𝑆 , Δ, are the executable, sketch, and logical translation of
the implementation. 𝑃ℎ , 𝑃0, 𝑃𝑐 and 𝑃𝑟 are the hypothesized,
initial, candidate, and repaired contracts.
𝜙 (\0, 𝜎1, \1) ∧ . . . ∧ 𝜙 (\𝑛−1, 𝜎𝑛, \𝑛). Though the safety property is
simply a one-step predicate, the step function can capture notions
of past-time linear temporal logic operators and thus it is relatively
easy, using a library of standard definitions, to cast interesting
temporal behaviors as properties. Lustre [3] is an example of a
language for representing such data-flow programs.

Conceptually, the repair algorithm for dataflow programs takes
as the implementation 𝑓 = Δ, the input type 𝐼 = Σ∗, the set of
all finite length sequences of stimuli, the output type 𝑂 = Θ∗, the
set of all finite length sequences of responses, and the contract in
need of repair 𝑠 (𝑣) = −→𝜙 ◦ zip.5 Given in concrete terms, however,
are the function 𝛿 : Θ × Σ → Θ along with \0 and a potentially
faulty predicate 𝜙 as the contract to be repaired. Thus, techniques
employed for checking the existence-queries in the repair algorithm
must be able to deduce the appropriate n-step consequences from
the 1-step representations. We use safety model-checking[7, 41],
which, given (𝛿, \0, 𝜙), answers “does Δ |= 𝜙 hold?” with either a ⊤
or a−→𝜋 = (𝜎1, \1) . . . (𝜎𝑛, \𝑛) such that

−→¬𝜙
(−→𝜋)

holds. Sometimes it
may be only possible/necessary to do a bounded query, “is Δ |= 𝜙

not violated within 𝑁 steps?”. With some trade-offs, such bounded
model-checking can also be used as discussed in the sequel.

5 REPAIRING REACTIVE CONTRACTS
We now present how Alg. 1 is realized for repairing invalid reactive
contracts over corresponding implementations. Fig. 1 shows an
overview of the repair process, which consists of three main steps.
The first step is the setup in which the executable implementation 𝐸
is translated into its dataflow program Δ, and in which a sketch 𝑆 is
created by marking dubious expressions in 𝑃ℎ . A dubious expression
is the expression to be replaced by a newly synthesized expression.
We use enumeration to mark all possible dubious expressions. The
second step is the Find Initial Repair step, in which both the sketch
and the counterexamples are used to find the first valid repair. The
counterexamples in this step correspond to must-admit behaviors
more specifically; they are pairs of sequences of inputs and their
matching outputs (

−→
𝐴), such that

−→
𝐴 : Σ∗ × Θ∗. If finding a repair

5The contract 𝑠 (𝑣) takes an I/O pair (separate sequences of stimuli and responses)
which must be stitched together into one sequence of stimulus-response pairs for

−→
𝜙 .

Counterexample-Guided Inductive Repair of Reactive Contracts FormaliSE’22, May 2022, Pittsburgh, PA, USA

was unsuccessful, the process terminates with no repair; otherwise,
the third step, Find Minimal Repair, follows.

In the Find Minimal Repair step, the process tries to strengthen
the initial repaired contract 𝑃0 by finding a minimal repaired con-
tract. To do that, we start by initializing the last known repaired
contract 𝑃𝑟 to the initial repaired contract 𝑃0. Note that finding
𝑃0 corresponds to having the last known repair boolean (𝑘) (in
Alg. 1) set to true. If no new candidate contract 𝑃𝑐 was found, then
the process terminates with 𝑃𝑟 being the minimal repaired con-
tract; otherwise, the process checks if the candidate contract 𝑃𝑐 is
matching the implementation and is tighter than 𝑃𝑟 . If both checks
are successful, then a new 𝑃𝑐 becomes the new repaired contract;
otherwise, the set of counterexamples are updated. Note that the
set of counterexamples, in this case, contains both the must-admit
and the may-discard sets, though again over pairs of sequences, i.e.,
−→
𝐴 ∪−→𝐷 . The process is repeated until no other repaired contract
can be found, in which case the process returns the last repaired
contract 𝑃𝑟 as the minimal repaired contract.

5.1 Setup
5.1.1 Translate the Implementation. We translate the bytecode im-
plementation of the component into a dataflow program function Δ,
which operates over sequences of stimuli and response6. This trans-
lation allows us to use the implementation semantics as a reference
to repair the contract. In general, such a reactive component in-
definitely executes a top-level control loop with each iteration
representing a reactive step in which the latest stimuli is consumed,
the internal state is updated, and a fresh response is produced.

The translation is done in three main steps. First, we summarize
𝐸 as a Gated Single Assignment form (GSA)[31, 40], an extension
of Single Static Assignment. In GSA, a logical if-then-else is used to
represent different values that a variable can take along different
control flow paths.

Second, from the GSA summarization we identify, (a) free input
variables which are variables that are used but are never defined in
the summarization, i.e., method input variables, (b) output variables,
these are variables that are written to but are never used in the
summarization, i.e., return variables, and finally state input and
state output variables which corresponds to the first use and the
last def of state variables respectively.

Finally, we create a dataflow step function (𝛿) where the free and
state-input variables are inputs to the function, state-output, and
output variables are outputs of the function. The GSA summary is
the body of the function. At this point, we have created the logical
representation of step functional (𝛿) for 𝐸, which has no stateful
behavior. To recapture stateful behavior and thereby creating the
dataflow program Δ, we let state-outputs flow in as state-inputs for
the subsequent invocations of the step function. The initial values
of variables constitute the values for the pre-response (\0).

5.1.2 Create a Sketch. Here we transform a hypothesized contract
into a sketch. This requires: (1) identifying dubious expression in the
6To facilitate representation, from this point on, we leave the explicit definition of the
length of the sequence (𝑛) out of the domain and the co-domain of Δ as well as the
inputs and outputs of the Δ. We just use (*) over domains and (−→) over variables to
represent sequences of any length, though we only consider response sequences that
have the same length as the corresponding stimuli sequences as per the definition of
Δ in Sec. 4

hypothesized contract, signifying the places where new synthesized
expressions are desired, and (2) defining the family of expressions
that are allowed as a replacement. Thus we extend Lustre with two
constructs: a repair expression and a repair generator. The former
identifies which sub-parts of 𝑃 we want to replace, and the latter
defines the family, i.e., the grammar, of the replacement expressions.
-Repair Expression: is of the form repair(𝑒1, 𝑒2). Here, 𝑒1 is the
dubious expression, the location of the hole in the sketch, and 𝑒2 is the
call to a repair generator that describes the family of replacement
expressions. The repair generator can reference 𝑒1 in generating a
suitable family of repair expressions, such as generating a family
of expressions with a similar size as the dubious expression.

For example, the default behavior of our implementation is to
try all possible repair locations for the dubious expression, among
the produced attempts. One possible repair attempt for the hypoth-
esized Alarm𝑐 contract of REQ59 in Sec.2 can be: (𝑂𝑛 ∧𝑇ℎ𝑒𝑟𝑎𝑝𝑦 ∧
𝐸𝑚𝑝𝑡𝑦) → repair((𝐴𝑙𝑎𝑟𝑚 = 4), logical_gen(𝐴𝑙𝑎𝑟𝑚)).
This repair attempt tries to find a replacement for the consequent
part of the implication, i.e., 𝐴𝑙𝑎𝑟𝑚 = 4. In this example, 𝐴𝑙𝑎𝑟𝑚 = 4
is 𝑒1, the dubious expression, and logical_gen is 𝑒2, the call to the
repair generator logical_gen, which is used to constrain the family
of possible replacement expressions to standard logical operations.
-Repair Generator: this defines the family, i.e., the grammar, of
the replacement expressions. To do that we extend the definition
of a node in Lustre as follows:

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟_𝑛𝑎𝑚𝑒 (−→𝑒) [−→𝑧] returns 𝑜𝑢𝑡 : 𝑏𝑜𝑜𝑙{𝑏𝑜𝑑𝑦}

−→𝑒 defines the repair terms, the leaves of any generated expression,
while−→𝑧 are holes for the sketch. The boolean return variable (out)
indicates value of the expression. For example, below is a fragment
of the logical_gen repair generator:

logical_gen(i:int) [𝑧1:int; 𝑧2:int] returns out:bool;
out = if (𝑧1 = 0) then i < 𝑧2 else if (𝑧1 = 1) then i > 𝑧2

else if (𝑧1 = 2) then i = 𝑧2

Using the solver’s valuations for 𝑧1 and 𝑧2, if any, ContractDR
partially evaluates the repair generator to obtain a new replacement
expression.

5.2 Repair Process
Weuse a CEGIR approach to repair an invalid hypothesized contract.
As described above, the repair process for reactive contracts is
realized using two key algorithms. The first (Alg. 2) attempts to
validate the hypothesized contract, and if invalid, it repairs it by
synthesizing a new expression for the dubious expression. The
second (Alg. 3) attempts to find a minimal repaired contract. That is,
it tries to tighten the initial repaired contract, but as other repaired
contracts are found, the algorithm repeatedly attempts to tighten
them until a minimal repaired contract is reached.

Both algorithms use VALID? and SAT? queries that are encoded
as unbounded and bounded model checking queries, respectively.

The VALID? query returns a pair: a boolean and a counterexam-
ple if the VALID? query was falsified. The counterexample is an
assignment to the free variables describing the sequence of stimuli
and response pairs that falsify the validity query. Similarly, the SAT?
query returns a pair: a boolean and a valuation 𝑣 if the SAT? query

FormaliSE’22, May 2022, Pittsburgh, PA, USA Soha Hussein, Sanjai Rayadurgam, Stephen McCamant, Vaibhav Sharma, and Mats Heimdahl

Algorithm 2: Find an Initial Repaired Property, where Σ∗,Θ∗ and
𝐻 are the domain of sequences of inputs, sequences of outputs and
holes respectively.

input :Program Δ : Σ∗→Θ∗

input :Sketch 𝑆 : 𝐻 → Σ∗ → Θ∗ → 𝔹,

input :Val 𝑣 : 𝐻
1 equiv← ¬⊤; −→

𝐴 ← { } : Σ∗ × Θ∗;
2 𝑃ℎ ← 𝑆 (𝑣); 𝑃𝑐 ← 𝑃ℎ ;
3 while not timeout do
4 (𝑒𝑞𝑢𝑖𝑣 ,(−→𝜎 ,

−→
\))← VALID?(∀−→𝜎 ∈ Σ∗,

−→
\ ∈ Θ∗ .(−→\ =

Δ(−→𝜎)) =⇒ 𝑃𝑐 (−→𝜎) (−→\));
5 if (equiv) then
6 𝑃0 ← 𝑃𝑐 ; 𝑃𝑚𝑖𝑛 ← find_minimal(Δ,𝑆 ,𝑃0,

−→
𝐴);

7 return 𝑃𝑚𝑖𝑛 ;
8 else
9

−→
𝐴 ←

−→
𝐴 ∪ {(−→𝜎 ,

−→
\)};

10 (candidateFound,𝑣 ′)←
SAT?(∃𝑣 ′ ∈ 𝐻.

∧
(−→𝜎𝑥 ,

−→
\𝑥) ∈

−→
𝐴

𝑆 (𝑣 ′) (−→𝜎𝑥) (
−→
\𝑥));

11 if not candidateFound then
12 fail; //unable to repair
13 𝑃𝑐 ← 𝑆 (𝑣 ′);

was satisfiable, where the satisfying assignment for 𝑣 gives the val-
ues for the holes that allow the sketch to separate the must-admit,
and the may-discard behaviors. Note that, since we are using a
verification engine tool to check the SAT? query, the actual formula
is, in fact, a negation of a validity query.

5.2.1 Finding an Initial Repair. Alg. 2 attempts to find an initial
repair for the hypothesized contract 𝑃ℎ . The algorithm instantiates
part of the general-purpose Alg. 1, when 𝑘 is false, to operate over
the synchronous dataflow program Δ, of a pair of sequences of
inputs, and sequences of outputs as opposed to a function 𝑓 and a
pair of input and outputs. Also, the sketch 𝑆 instantiates the abstract
sketch 𝑠 to operate over stimuli and responses sequences. Its result
is a boolean specifying whether a specific instantiation (of holes,
stimuli, and responses) satisfies the desired sketch or not. Also,
here, a contract 𝑃 , expressing a safety property, is instantiated to
operate over sequences of inputs and sequences of outputs.

Initially, we initialize the set of the must-admit sequences of
behaviors

−→
𝐴 (line 1), and instantiate the hypothesized contract

𝑃ℎ with the input values 𝑣 , which becomes our candidate contract
𝑃𝑐 (line 2). The algorithm alternates between an unbounded ver-
ification query (line 4) and a bounded synthesis query (line 10).
The unbounded verification checks whether the candidate safety
contract 𝑃𝑐 holds for all sequences of stimuli and their correspond-
ing responses generated by the dataflow program. If it did, then
𝑃𝑐 becomes the initial repaired contract 𝑃0, and the find minimal
algorithm is invoked to attempt to tighten it further (line 6).

If the VALID? query was falsified, then a counterexample pair
(−→𝜎 ,
−→
\) is generated and is added to the must-admit set

−→
𝐴 (line

9). Then, the bounded synthesis query checks whether there is
some value for the holes (𝑣 ′), such that the sketch 𝑆 is satisfied

Algorithm 3: Find Minimal Repaired Property, with
dataflow program Δ, sketch 𝑆, and property 𝑃 . Σ∗,Θ∗ and𝐻
are the domain of sequences of inputs, sequences of outputs
and holes respectively.
input :Program Δ : Σ∗→Θ∗

input :Sketch 𝑆 : 𝐻 → Σ∗ → Θ∗ → 𝔹

input : Initial Repaired Property 𝑃0 : Σ∗ → Θ∗ → 𝔹

input :Must Admit
−→
𝐴 : Σ∗ × Θ∗

1
−→
𝐷 ← { }; 𝑃𝑟 ← 𝑃0 ;

2 while not timeout do
3 (candidateFound,𝑣)← SAT?(∃𝑣 ∈ 𝐻,−→𝜎 ∈ Σ∗,

−→
\ ∈

Θ∗ .
∧

−→
𝜎𝑥 ,

−→
\𝑥 ∈

−→
𝐴

𝑆 (𝑣) (−→𝜎𝑥) (
−→
\𝑥) ∧∧

−→
𝜎𝑦 ,

−→
\ 𝑦 ∈

−→
𝐷

¬𝑆 (𝑣) (−→𝜎𝑦) (
−→
\ 𝑦) ∧ ¬𝑆 (𝑣) (−→𝜎) (−→\) ∧

𝑃𝑟 (−→𝜎) (−→\));
4 if not candidateFound then
5 return 𝑃𝑟 ;
6 𝑃𝑐 ← 𝑆 (𝑣);
7 (isTighter,(−→𝜎𝑥 ,

−→
\𝑥))← VALID?(∀−→𝜎𝑥 ∈ Σ∗,

−→
\𝑥 ∈

Θ∗ .𝑃𝑐 (−→𝜎𝑥) (
−→
\𝑥) =⇒ 𝑃𝑟 (−→𝜎𝑥) (

−→
\𝑥));

8 (isMatching,(−→𝜎𝑦,
−→
\𝑦))← VALID?(∀−→𝜎𝑦 ∈ Σ,

−→
\𝑦 ∈

Θ∗ .(−→\𝑦 = Δ(−→𝜎𝑦)) =⇒ 𝑃𝑐 (−→𝜎𝑦) (
−→
\𝑦));

9 if (isTighter and isMatching) then
10 𝑃𝑟 ← 𝑃𝑐 ;
11 else
12 if not isMatching then
13

−→
𝐴 ←

−→
𝐴 ∪ {(−→𝜎𝑦,

−→
\𝑦)};

14 else
15

−→
𝐷 ←

−→
𝐷 ∪ {(−→𝜎𝑥 ,

−→
\𝑥)};

for all pairs of stimuli and responses in
−→
𝐴 . If the SAT? query is

true, then we have a new candidate (line 13); otherwise, the process
terminates as no candidate is available (line 12).

5.2.2 Finding a Minimal Repair. We impose three conditions while
searching for a repaired contract 𝑃𝑐 that is tighter than the last
repaired contract 𝑃𝑟 : (1) 𝑃𝑐 must pass all previously collected coun-
terexamples, (2) 𝑃𝑐 must be semantically tighter than the last known
repaired contract 𝑃𝑟 , and finally (3) for all inputs, the candidate
contract 𝑃𝑐 is valid on dataflow program Δ.

In Alg. 3, the candidate repair is synthesized in line 3. Now
observe that this SAT? query is different than the SAT? query on
line 10 in Alg. 2. Besides the extra constraint to ensure that all
counterexamples in

−→
𝐷 (the second conjunct) cannot be satisfied, the

rest of the formula requires that the new candidate has a difference
on one stimulus and response pair (−→𝜎 ,

−→
\). This can indicate that

the resulting candidate contract is tighter than the last known
repaired contract. In other words, it is a necessary condition but
not sufficient to guarantee tightness of the candidate contract. Also,
note that both −→𝜎 , and

−→
\ are elements of a bounded sequences

of stimuli Σ∗, and the bounded sequences of responses Θ∗. For
practical consideration we bound the lengths of input and output

Counterexample-Guided Inductive Repair of Reactive Contracts FormaliSE’22, May 2022, Pittsburgh, PA, USA

sequences. This bound ensures that the search for a new candidate
has an upper limit over the length of sequences of the stimuli and
subsequently the responses length. If no candidate can be found,
then the last repaired contract is returned (line 5).

If a candidate is found, we check that it is both tighter than the
last known repair (line 7) and is matching the dataflow program
(line 8). If it is, then a new repair is found (line 10), otherwise, we
update the corresponding set of counterexamples (lines 13,14).

5.2.3 Limitations. Soundness of both Alg. 2, and Alg. 3 carries over
from the general-purpose Alg. 1. Termination of both algorithms is
enforced using timeouts if the search for repairs is not complete
within a time budget. However, repairs generated by the instanti-
ated algorithms are only boundedly minimal. This results from the
length bound that is imposed on the set of stimuli (Σ∗), and the set
of responses Θ∗, within which the search for a tighter candidate
occurs (the third and fourth conjuncts in line 3) in Alg. 3. This
means that a possible tighter repair candidate may be disregarded
by our Alg. 3 because it can only be found using a longer sequence
of stimuli-response that is larger than the imposed bound.

Also, as the underlying verification techniques are incomplete,
we may fail to find a repair even if one exists. In our experience
this accounts for 17% of the attempted repair problems. Note that,
currently ContractDR does not incorporate loop summarization
techniques[15, 39] when extracting the dataflow program and thus
does not handle implementations that have loops beyond the top-
level control loop. Finally, the expressiveness of the repair genera-
tors can affect the completeness and theminimality of the generated
repairs. More precisely ContractDR will not produce a repair that
exists outside the family of expressions used in the repair.

6 EVALUATION
We implemented the above technique in a tool named ContractDR[1].
ContractDR’s input is a hypothesized contract and a Java bytecode
implementation of the executable reactive component. ContractDR
creates a dataflow program representing the bytecode implementa-
tion using the summarization in the path-merging symbolic execu-
tion tool called Java Ranger (JR) [18]. JR’s summary is composed in
GSA format, which ContractDR utilizes to create the corresponding
dataflow program in Lustre syntax [3]. ContractDR uses JKind[13],
an open-source industrial-strength infinite-state model-checker for
safety properties for models expressed in the synchronous data-flow
language Lustre, for synthesizing and verifying repaired contracts.

We answer the following research questions:
RQ1: What is the performance of ContractDR?
RQ2: What is the effect of the dubious location?
RQ3: What is the effect of a poor hypothesized contract?
RQ4: What is the effect of the implementation complexity?
RQ5: Can dynamically-inferred invariants be used as repairs?

Table 1: Benchmarks
loc prop.#

WBS 265 2
TCAS 300 3
Infusion𝑐 1,022 12
Alarm𝑐 1,722 10
Total 3,309 29

- Benchmarks: We used 4
Java programs Tbl. 1. Two
of the benchmarks, WBS
and TCAS, are widely used
in the research community
for evaluating verification
and testing tools. The other

Table 2: General Performance of ContractDR.

total attempts # 4060
already matching attempts # 906
no synth attempts # 698
repairable attempts # 2456
repaired attempts #(%) 2002 (81.51%)
match repairs % 20.72%
other. relevant repairs % 60.79%
repaired minimal reached % 80.2%
repaired minimal SAT TO % 3.6%
repaired minimal VALID TO % 1.1%
repaired minimal cand. reached % 12.4%
repaired attempts TO % 2.5%
repaired median / avg exec. (s) 37.9 / 324.7
repaired median / avg SAT (s) 10.9 / 260.3
repaired median / avg VALID (s) 21.9 / 62.3
unrepaired # (%) 454 (18.49%)
unrepaired initial SAT TO% 8.1%
unrepaired Initial VALID TO % 26.4%
unrepaired initial candidates reached % 3.7%
unrepaired minimal reached % 18.5%
unrepaired minimal SAT TO % 4.0%
unrepaired minimal VALID TO % 21.4%
unrepaired minimal cand. reached % 17.8%
unrepaired median / avg exec. (s) 601.2 / 384.6
unrepaired median / avg SAT (s) 4.8 / 39.4
unrepaired median / avg VALID (s) 298.4 / 344.4

two benchmarks, Alarm𝑐

and Infusion𝑐 , are from the domain of formal specification.7 We
manually translated the latter’s Simulink autogenerated C code
to Java and generated their bytecode versions. WBS, TCAS, and
Infusion𝑐 have only linear computation, but Alarm𝑐 involves non-
linear computation. The expected difficulty increases top to down
correlated with the size of the benchmark. We obtained contracts
from the assert statements inWBS and TCAS, and the requirements
of the GPCA model. Only those contracts that were either proved
to be true, or could not be falsified in 30 minutes, using JR, were
taken as valid (total of 29 contracts).
-Mutation Generation: We introduced one or two faults into con-
tracts to generate a 1-fault mutant and a 2-fault mutant. This allows
us to measure the effect of repairing poorer hypothesized contract
on the repair. We used specification mutation operators [8]: Logi-
cal Operator Replacement, replace a logical operator with another
logical operator, and Relational Operator Replacement, replace a
relational operator with another relational operator.
-Repair Attempts: A repair attempt for ContractDR describes a
particular location in the contract to be the dubious expression. By
default, ContractDR enumerates all possible sub-expressions, as
the dubious expression and attempts to repair them one by one.
ContractDR stops when it has tried all of them. To diversify the mu-
tation problems given to ContractDR to repair, instead of picking a
small number of mutants and allowing ContractDR to enumerate
all possible repair attempts, we used single runs of unrelated repair
attempts. This allowed us to run 4,060 unrelated repair attempts,
with more coverage of mutations/ faults.

7Generic Infusion Pump Research Project at https://rtg.cis.upenn.edu/gip/

https://rtg.cis.upenn.edu/gip/

FormaliSE’22, May 2022, Pittsburgh, PA, USA Soha Hussein, Sanjai Rayadurgam, Stephen McCamant, Vaibhav Sharma, and Mats Heimdahl

To measure the effect of the location of the dubious expression,
we marked repair attempts either as inclusive or not inclusive de-
pending on whether their dubious expression includes all faults
or not. Ideally, ContractDR should be able to provide repairs for
the inclusive, as we know that a repair exists in this location. On
the other hand, there is no such a guarantee for the not inclusive
classes: it only sometimes happens that a repair in one area can
compensate for a fault in another. We enforced an equal number of
attempts between the inclusive and non-inclusive attempts.
-Repair Classes: Repairs can either be: a matching repair, that
results in a contract that is either equivalent or tighter than the
original unmutated contract, or a relevant repair, that results in
a contract that has no logical implication relationship with the
original unmutated contract, yet it describes non-trivial valid infor-
mation about the component.
- Integer Ranges: We constrained integer ranges for synthesis
by statically analyzing Java bytecode to find which constants are
used with a given variable. In few remaining cases we manually
identified range information that was present in the Simulink model
but not in the generated code.
- Repair Generators: ContractDR automatically composes logi-
cal repair generators. These generators contain standard logical
operations, integer comparison operators, and integer constants.
Their general structure is a binary tree of logical operators, with
the leaves having a boolean type. The maximum depth of the repair
is one larger than the size of the dubious expression. This allows
generation of new replacement expressions that are richer but not
too large relative to the dubious expression.
- Evaluation Setup: We ran ContractDR on a sample of 70 repair
attempts per contract, half inclusive-half non-inclusive of faults. We
have repeated this experiment twice, one time for 1-fault mutants
and another for 2-fault mutants. We used a timeout of 10 minutes
for each JKind query with at most 5 iterations for finding an initial
repair (Alg.2), and 30 iterations for finding a minimal repair (Alg. 3).
We used Z3 [4] as the back-end SMT solver and imposed a 1-hour
overall timeout per repair attempt. We used the default engines of
JKind for the VALID? queries and turned off all except BMC for the
SAT? queries. The maximum steps for BMC were limited to three
times the maximum length of any test case to ensure boundness
over the SAT? query in Alg. 3. The experiment machine ran Ubuntu
16.04.6 on a 3.6 GHz Intel Core i7-7700 CPU processor with 32 GB
RAM. We used a 2GB Java heap size.

RQ1: What is the performance of ContractDR?
Tbl. 2 shows the overall performance of ContractDR. The first sec-
tion describes: the total number of attempts (attempts#), the number
of repair attempts of already valid contracts (already matching at-
tempts#), i.e., the attempts whose corresponding mutated contract
is not violating the component, the number of no synthesis at-
tempts (no syn attempts#), i.e., the attempts that cannot be repaired
to non-trivial repairs using the automatically composed logical
repair generators, and the selected dubious location, and finally
the (repairable attempts#), i.e., the attempts that ContractDR is
expected to repair since they are violating the component and there
exists a non-trivial repair for them. Note that the two groups of
attempts: matching attempts and no synth attempts, are identified
and reported by ContractDR. We excluded these classes (matching

Table 3: Match and Relevant Repairs. Times in seconds.

match relevant
repairable attempts# 2,456
attempts# (%) 509 (20.7%) 1,493 (60.8%)
median/avg exec. 28.4/77.9 49.7/408.6
median/avg SAT 8/44.5 15.4/333.7
median/avg VALID 18.5/32.6 26.4/72.4

inclusive non-inclusive
match relevant match relevant

repaired attempts# 443 882 66 611
median/avg exec. 28.8/79.2 155.7/647.2 18.6/68.9 20.291/64.3
median/avg SAT 8.0/47.71 40.892/552.2 5.7/22.6 6.0/18.3
median/avg VALID 19/30.7 46.5/91 12.2/45.5 12.7/45.5

1-fault 2-fault
match relevant match relevant

repaired attempts # 303 629 206 864
median/avg exec. 21.5/63.3 63.3/491 34.8/99.2 48.9/335
median/avg SAT 6.2/39 14.41/418.1 10.2/52.5 16.2/277
median/avg VALID 13.686/23.7 28.0/70 22.2/45.8 27/76

Table 4: Performance per Benchmark. Times in seconds.

WBS TCAS Infusion𝑐 Alarm𝑐

attempts# 280 420 1,960 1,400
matching # 73 156 479 198
no synth attempts# 63 29 309 297
repairable attempts 144 235 1172 905
repaired attempts % 97% 97% 89% 66%
minimal reached % 83% 74% 80% 81%
minimal SAT / VALID TO % 3% / 0% 17% /0% 3% /0% 1% / 4%
minimal VALID TO % 0% 0% 0% 4%
minimal cand. bound % 0% 6% 15% 13%
1-hour TO % 7% 3% 2% 2%
unrepaired % 3% 3% 11% 34%
initial SAT / VALID TO% 0% / 0% 0% /0% 25% / 0% 1% /39%
initial VALID TO % 0% 0% 0% 39%
initial cand. bound % 0% 83% 7% 1%
median / avg exec (s) 41.9 / 312 22.8 / 562 29.4 / 212 126.6 / 367
median / avg SAT (s) 24.3 / 271 12.1 / 535 9.8 / 182 8 / 95
median / avg VALID (s) 12.3 / 39 10.7 / 25 18.2 / 28 90.9 / 270

attempts and no syn attempts) from the rest of the statistics since
we were interested in evaluating ContractDR only when a valid,
non-trivial repair is possible.

Generally, ContractDR has a successful repair rate of 81.51%,
with 20.72% matching repair (a repair that is equivalent or tighter
than the unmutated contract), and 60.79% relevant repairs.
- On the performance of repaired attempts: in the middle section of
Tbl. 2, the most dominant reason for termination is reaching the
minimal contract (repairedminimal reached 80.2%). Also, timing out
due to generating too many invalid minimal candidates (minimal
candidates reached 12.4%), are more likely to be the second cause
of termination. Other termination reasons, such as query timeout
(minimal SAT? TO, minimal VALID? TO), or repair attempt timeout
(attempts TO), are less likely to occur.

Also, most of the attempts have relatively low execution or query
times (median execution, SAT, and VALID). However, their corre-
sponding averages are much larger; this indicates that some outliers
of repair attempts take too long to terminate. Finally, the synthe-
sis step, on average, takes most of the execution time for repair

Counterexample-Guided Inductive Repair of Reactive Contracts FormaliSE’22, May 2022, Pittsburgh, PA, USA

attempts, suggesting that optimization of this query can boost per-
formance of repaired attempts.
- On the performance of unrepaired attempts: the last part in Tbl. 2
shows that unrepaired attempts account for 18.49% of all the re-
pairable attempts. Termination for this category is dominated by the
initial VALID? query timing out, followed by the inability to synthe-
size a tighter contract (minimal reached 18.5%) and finally, timing
out due to attempting too many candidates (minimal candidate
reached 17.8%). Other less frequent terminating factors include ter-
mination due to timing out of the initial or the minimal SAT query
(Initial SAT? TO), and minimal SAT? TO, reaching the maximum
number of invalid initial candidates (Alg. 2) (initial cand. bound). Fi-
nally, observe that VALID? is more expensive than SAT?, indicating
the difficulty of proving or disproving unrepaired contracts.
- On the performance of repaired classes: looking at repair classes in
the first part in Tbl. 3, we observe that the class of matching repairs
is generally faster than the class of relevant repairs. i.e., median
execution time drops from 49.7s to 28.4s from relevant to matching
attempts, and its average time decreases from 408.6s to 77.9s from
relevant to matching attempts. This indicates that outliers of repair
attempts in the matching class either do not happen as frequently
or do not take as much time as their relevant counterparts.

RQ2: What is the effect of the dubious location?
- On the effect of fault inclusion on repaired classes: we observe in the
second part of Tbl. 3 that the repairs in the inclusive category are
about twice as many as repairs of the non-inclusive category (from
1,325 to 677). Despite starting the experiment with an equal number
of inclusive and non-inclusive attempts, more of the non-inclusive
attempts fall into the unrepaired or no synthesis category, resulting
in ContractDR generating fewer repairs for them. This indicates
that if the dubious expression is in the right place, it is more likely
to get to a matching repair. Furthermore, a small number of non-
inclusive attempts can result in matching repairs, indicating that
there are some locations outside of the occurrence of the fault that,
if repaired, can compensate for the introduced fault.
- On the effect of fault inclusion on performance: in the middle part of
Tbl. 3 we observe that the average execution of repairs generated
from the non-inclusive repair attempts (68.9, and 64.3 in match and
relevant repairs) are faster than repairs generated by the inclusive at-
tempts (79.2, and 647.2 in match and relevant repairs). This indicates
that there are fewer options in the not-inclusive class and therefore
less search that ContractDR needs to do until it terminates; this led
to the overall faster execution. Also, the average time of SAT? query
in the inclusive, relevant repairs are much higher than other classes,
indicating that relevant repairs can become computationally expen-
sive to compute due to running multiple minimal repairs iterations.

Table 5: Effect of poor sketch.
attempts# 4,060
no synth attempts# 698
median / avg exec. (s) 1.2 / 7.6
median / avg SAT (s) 0 / 1.7
median / avg VALID (s) 1.1 / 5.9

- On the effect of
a poor sketch: Al-
though we have not
extensively studied
the impact of the
sketch on the repair,
its effect shows up in
the no-synthesis at-
tempts (no syn attempts), which indicates that ContractDR could

Figure 2: CDF Execution Time (s)

not find a repair using the automatically composed repair genera-
tors. Tbl. 5 shows that these attempts tend to be relatively fast.

RQ3:What is the effect of a poor hypothesized
contract?
The lower part of a Tbl. 3 shows the effect of poor hypothesized
contract. There the matching repairs generated from 1-fault repair
attempts are about a third higher than their 2-fault counterparts
(303 to 206). Also, the total number of repairs (match, and relevant)
between 1-fault and 2-fault attempts remain about the same (932
repairs in 1-fault, and 1,070 in 2-faults). This result is expected as
ContractDR’s preference for a tighter repair does not include any
guidance towards an ideal repair.

RQ4: What is the effect of the implementation’s
complexity?
In Tbl. 4, we observe that as the complexity and the size of the
benchmark increases (from left to right), the likelihood of find-
ing repairs decreases. ContractDR’s success rate of finding repairs
ranged from 97% in WBS and TCAS, to 89% and 66% in Infusion𝑐
and Alarm𝑐 . Notably, the relatively low repair percentage in the
Alarm𝑐 benchmark is due to the non-linear computation in the
benchmark. Also observe that reaching the minimal repair (Mini-
mal Reached) is the most common termination reason in repaired
attempts, indicating that ContractDR is finding the minimal repairs
most of the time. The second most common termination reason
with a repair is different among the benchmarks. For example, ter-
minating due to timing out of the SAT? query (minimal SAT? TO)
is the second termination reason for TCAS. This is because TCAS
has the broadest range of integer values that ContractDR needs to
search through to find a valid repair. However, terminating due to
the validity query timing out (minimal VALID? TO) only shows up
in Alarm𝑐 due to its non-linear computation. Terminating due to
reaching the limit of invalid candidates (minimal cand. bound) is
correlated with the size and the number of different variables in
the mutated contract. As the number of variables and depth of the
repair sketch increases, the number of candidates increases. Since
Infusion𝑐 has the highest number of contracts (14 out of the 29 con-
tracts) with many different variables, the likelihood of termination
due to reaching the limit of invalid candidates increases. Finally,
the overall 1-hour TO is rarely reached.

FormaliSE’22, May 2022, Pittsburgh, PA, USA Soha Hussein, Sanjai Rayadurgam, Stephen McCamant, Vaibhav Sharma, and Mats Heimdahl

The highest percentage of unrepairedmutants (34%) is for Alarm𝑐 .
This is again due to its non-linear computation. In general, although
we have not implemented that, approximation of non-linear compu-
tation is likely to improve repair results for non-linear components.
We leave that improvement for future work. Finally, we observe
that the SAT? queries dominates most of the execution time. except
for the Alarm𝑐 where verifying contracts was the bottleneck. Fig. 2
shows the Cumulative Distribution Function (CDF) of the running
time of ContractDR. Observe that the majority of the runs were
fast, but a minority were much slower. The intersections of the
curves with the 0.5 horizontal line correspond to median runtimes,
thus indicating that the median runtime was under a minute or two
for all the benchmarks. The runs between 0.5 and 1.00 also show
that 60-90% of the runs were relatively fast. On the other hand,
the top part of the graph shows that some runs took much longer.
This is mostly associated with having a lot of iterations and finding
many repairs. The nearly-vertical section of the Alarm curve a little
past 600 seconds suggests that around 15-20% of all the Alarm runs
took a similar amount of time, slightly more than 600 seconds. This
is usually due to having small, inexpensive queries, followed by a
complex VALID? query that timed out.

RQ5: Can dynamically-inferred invariants be
used as repairs?
To compare repairs generated by ContractDR with invariant prop-
erties from previous techniques, we generated invariants for our 4
benchmarks and compared them with the original properties. We
first tried to use iDiscovery [43] which is a feedback-driven invari-
ant discovery tool that utilizes symbolic execution (SPF [33]) to
search for new tests that might falsify Daikon invariants. However,
its path exploration was too slow, which we attribute to using an
old version of SPF. So instead we generated test cases from com-
plete path exploration using the latest version of SPF [2], then used
Daikon [12] to generate invariants from those tests. We used the
maximum number of inputs for each benchmark for which SPF
can finish complete path exploration in less than 24 hours (Tbl. 6).
Due to the complexity of Alarm𝑐 , we limited the exploration of the
symbolic exploration tree to a depth of 152 for a single step. We
also configured Daikon to generate set-of-values (“OneOf”) invari-
ants up to size 8, and we guided the invariant generation towards
conditions that appear in the original properties. 8

The results in Tbl. 6 shows that the majority of the invariants,
similar to ContractDR’s repairs except those on WBS, fall in the
relevant repair class, but unlike ContractDR much fewer invari-
ants (Inv) are generated in the matching class. Most of the original
properties are implications where the antecedent is a conjunction,
which is a grammatical form beyond what Daikon’s algorithms gen-
erate. Daikon creates implications by searching for properties that
hold on a subset (“split”) of the data, but only when the antecedent
always holds on one side of the split and never on the other; this
requires that the antecedent be a single invariant [11, section 6.2].
Daikon could only generate such invariants if it found a single in-
variant equivalent to the conjunction. But we also attribute some of
the unsatisfying results to limitations of the test cases we provided

8We manually created split info files that contains the conditions that Daikon should
use to create conditional invariants.

Table 6: Classes of Daikon Invariants as Repairs

inputs time(m) inv match relevant
WBS 15 204 14 0 14
TCAS 24 18 2 0 2

Infusion𝑐 100 141 46 2 44
Alarm𝑐 (152 depth) 43 330 6 0 6

Targeted P9 100 - 28 1 (combined) 28

to Daikon; for instance Daikon generated a number of invariants
(which we exclude from the evaluation) which held over our test
cases but not in general.

To further investigate, we conducted a targeted experiment. The
result of this experiment shows in the last row in Tbl. 6. The goal of
this experiment was to create a perfect test suite for a specific prop-
erty, then compare the resulting invariants. We defined a perfect
test suite for a property 𝑃 , as the test suite that allows Daikon
to generate invariants whose conjunction implies the targeted
property. The property we were targeting was in the Infusion𝑐
(𝑂𝑛 ∧ 𝐴𝑙𝑎𝑟𝑚 = 4) → (𝑚𝑜𝑑𝑒 = 1 ∨𝑚𝑜𝑑𝑒 = 6 ∨𝑚𝑜𝑑𝑒 = 7). The
result in the last row of Tbl. 6 shows that with a sufficient test suite,
Daikon is successful in generating 28 invariants whose conjunction
implies the human-written property. However, none of the individ-
ual invariants matches the human-written one, and conjoining 28
different invariants results in a combined property (comb) that is im-
practically complex compared to the desired property. When trying
to find a minimum set of invariants where the implication would
still hold, we found that the resultant invariants use 12 boolean
terms, as opposed to only 5 boolean terms in the original property.
This illustrates how a repair approach is more effective to create a
compact and human-readable.

To conclude, Daikon is geared towards finding certain forms of
invariants that hold over programs’ execution, while ContractDR
is intended to finding a single contract that is “close” to the desired.
The experiment illustrates that even with substantial guidance,
invariant generation with Daikon cannot be easily repurposed to
address the problem that ContractDR addresses.

7 CONCLUSION AND FUTUREWORK
We define the problem of repairing contracts that are not valid on
their implementations. We describe a general-purpose contract re-
pair algorithm and show how to instantiate for it to repair contracts
of reactive components. All algorithms are sound, boundedly mini-
mal, and under reasonable assumptions terminating and complete.
We presented an extensive study on the various factors affecting
the performance and the quality of the generated repairs.

In the future, we plan to generate smarter sketches, by utilizing
dependencies among the component’s variables. We also plan on
extending this work to prioritize repair locations. And finally, a
follow-up user study would complement the results presented in
this paper.

ACKNOWLEDGMENTS
The authors would like to thank An Nguyen for supplying bench-
marks for evaluating the initial prototype of this work.

Also, the research described in this paper has been supported in
part by the National Science Foundation under grant 1563920.

Counterexample-Guided Inductive Repair of Reactive Contracts FormaliSE’22, May 2022, Pittsburgh, PA, USA

REFERENCES
[1] [n. d.]. ContractDR GitHub Repository. Retrieved March 29, 2022 from https:

//github.com/sohah/ContractDR
[2] [n. d.]. jpf-symbc. Retrieved March 29, 2022 from https://github.com/

SymbolicPathFinder/jpf-symbc
[3] [n. d.]. Lustre. Retrieved March 29, 2022 from http://www-verimag.imag.fr/The-

Lustre-Programming-Language-and
[4] [n. d.]. Z3. Retrieved March 29, 2022 from https://rise4fun.com/z3/tutorial
[5] Chris Ackermann, Rance Cleaveland, Samuel Huang, Arnab Ray, Charles Shelton,

and Elizabeth Latronico. 2010. Automatic Requirement Extraction from Test
Cases. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) 6418 LNCS (2010), 1–15.
https://doi.org/10.1007/978-3-642-16612-9_1

[6] Rajeev Alur, Salar Moarref, and Ufuk Topcu. 2013. Counter-Strategy Guided
Refinement of GR(1) Temporal Logic Specifications. 2013 Formal Methods in
Computer-Aided Design, FMCAD 2013 (aug 2013), 26–33. arXiv:1308.4113 https:
//arxiv.org/abs/1308.4113v1

[7] David Arney, Raoul Jetley, Paul Jones, Insup Lee, and Oleg Sokolsky. 2007. Formal
methods based development of a PCA infusion pump reference model: Generic in-
fusion pump (GIP) project. Proceedings - 2007 Joint Workshop on High Confidence
Medical Devices, Software, and Systems and Medical Device Plug-and-Play Interop-
erability, HCMDSS/MDPnP 2007 (2007), 23–33. https://doi.org/10.1109/HCMDSS-
MDPNP.2007.36

[8] P. E. Black, V. Okun, and Y. Yesha. 2000. Mutation operators for specifications.
Proceedings ASE 2000: 15th IEEE International Conference on Automated Software
Engineering (2000), 81–88. https://doi.org/10.1109/ASE.2000.873653

[9] Davide G. Cavezza. 2016. Interpolation-Based GR(1) Assumptions Refinement.
CoRR abs/1611.0 (2016). http://arxiv.org/abs/1611.07803

[10] Hoang Duong, Thien Nguyen, and Satish Chandra. 2013. SemFix : Program
Repair via Semantic Analysis. In ICSE. 772–781. https://compsec.comp.nus.edu.
sg/papers/ICSE13-SEMFIX.pdf

[11] Michael D Ernst and Contributors. 2020. {Daikon} User Manual (version 5.8.4 ed.).
https://plse.cs.washington.edu/daikon/download/doc/daikon.pdf

[12] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. 2007. The Daikon system for
dynamic detection of likely invariants. Science of Computer Programming 69, 1-3
(dec 2007), 35–45. https://doi.org/10.1016/J.SCICO.2007.01.015

[13] Andrew Gacek, John Backes, Mike Whalen, Lucas Wagner, and Elaheh Ghassa-
bani. 2018. The JKindModel Checker. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
10982 LNCS (jul 2018), 20–27. https://doi.org/10.1007/978-3-319-96142-2_3

[14] Pranav Garg, Daniel Neider, P. Madhusudan, and Dan Roth. 2016. Learning
invariants using decision trees and implication counterexamples. ACM SIGPLAN
Notices 51, 1 (apr 2016), 499–512. https://doi.org/10.1145/2837614.2837664

[15] Patrice Godefroid and Daniel Luchaup. 2011. Automatic partial loop summa-
rization in dynamic test generation. 2011 International Symposium on Soft-
ware Testing and Analysis, ISSTA 2011 - Proceedings (2011), 23–33. https:
//doi.org/10.1145/2001420.2001424

[16] Jinru Hua, Mengshi Zhang, KaiyuanWang, and Sarfraz Khurshid. 2018. SketchFix:
A tool for automated program repair approach using lazy candidate generation.
ESEC/FSE 2018 - Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (oct 2018), 888–891. https://doi.org/10.1145/3236024.3264600

[17] Soha Hussein, Vaibhav Sharma, Stephen McCamant, Sanjai Rayadurgam, and
Mats Heimdahl. 2021. Counterexample Guided Inductive Repair of Reactive
Contracts. In 2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 1190–1192.

[18] Soha Hussein, Vaibhav Sharma, Michael W Whalen, Stephen McCamant, and
Willem Visser. [n. d.]. JavaRanger. https://github.com/vaibhavbsharma/java-
ranger

[19] Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem. 2005. Program
Repair as a Game. Lecture Notes in Computer Science 3576 (2005), 226–238.
https://doi.org/10.1007/11513988_23

[20] Aviv Kuvent, Shahar Maoz, and Jan Oliver Ringert. 2017. A symbolic justice
violations transition system for unrealizable GR(1) specifications. Proceedings of
the ACM SIGSOFT Symposium on the Foundations of Software Engineering (aug
2017), 362–372. https://doi.org/10.1145/3106237.3106240

[21] Xuan Bach D. Le, Duc Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
2017. S3: Syntax- and semantic-guided repair synthesis via programming by
examples. Proceedings of the ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering (aug 2017), 593–604. https://doi.org/10.1145/3106237.3106309

[22] Wenchao Li, Lili Dworkin, and Sanjit A. Seshia. 2011. Mining assumptions for
synthesis. 9th ACM/IEEE International Conference on Formal Methods and Models
for Codesign, MEMOCODE 2011 (2011), 43–50. https://doi.org/10.1109/MEMCOD.
2011.5970509

[23] Fan Long and Martin Rinard. 2015. Staged program repair with condition syn-
thesis. 2015 10th Joint Meeting of the European Software Engineering Conference

and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
ESEC/FSE 2015 - Proceedings (aug 2015), 166–178. https://doi.org/10.1145/2786805.
2786811

[24] Shahar Maoz, Jan Oliver Ringert, and Rafi Shalom. 2019. Symbolic Repairs
for GR(1) Specifications. Proceedings - International Conference on Software
Engineering 2019-May (may 2019), 1016–1026. https://doi.org/10.1109/ICSE.2019.
00106

[25] Matias Martinez and Martin Monperrus. 2016. ASTOR: A program repair library
for Java (Demo). ISSTA 2016 - Proceedings of the 25th International Symposium
on Software Testing and Analysis (jul 2016), 441–444. https://doi.org/10.1145/
2931037.2948705

[26] Sergey Mechtaev, Manh Dung Nguyen, Yannic Noller, Lars Grunske, and Abhik
Roychoudhury. 2018. Semantic program repair using a reference implementation.
Proceedings - International Conference on Software Engineering 2018-May (aug
2018), 129–139. https://doi.org/10.1145/3180155.3180247

[27] Anitha Murugesan, Michael W. Whalen, Sanjai Rayadurgam, and Mats P.E. Heim-
dahl. 2013. Compositional verification of a medical device system. HILT 2013 -
Proceedings of the ACM Conference on High Integrity Language Technology (2013),
51–64. https://doi.org/10.1145/2527269.2527272

[28] ThanhVu Nguyen, Matthew B Dwyer, and Willem Visser. 2017. SymInfer: In-
ferring Program Invariants Using Symbolic States. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering (ASE
2017). IEEE Press, 804–814.

[29] Thanhvu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2014.
DIG: A dynamic invariant generator for polynomial and array invariants. ACM
Transactions on Software Engineering and Methodology 23, 4 (sep 2014). https:
//doi.org/10.1145/2556782

[30] Thanh Vu Nguyen, Timos Antonopoulos, Andrew Ruef, and Michael Hicks. 2017.
Counterexample-guided approach to finding numerical invariants. Proceedings
of the ACM SIGSOFT Symposium on the Foundations of Software Engineering (aug
2017), 605–615. https://doi.org/10.1145/3106237.3106281

[31] Karl J. Ottenstein, Robert A. Ballance, and Arthur B. MacCabe. 1990. The Program
Dependence Web: A Representation Supporting Control-, Data-, and Demand-
driven Interpretation of Imperative Languages. In Proceedings of the ACM SIG-
PLAN 1990 Conference on Programming Language Design and Implementation
(White Plains, New York, USA) (PLDI ’90). ACM, New York, NY, USA, 257–271.
https://doi.org/10.1145/93542.93578

[32] Saswat Padhi, Rahul Sharma, and Todd Millstein. 2016. Data-Driven precondition
inference with learned features. Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI) 13-17-June (jun 2016),
42–56. https://doi.org/10.1145/2908080.2908099

[33] Corina S. Păsăreanu and Neha Rungta. 2010. Symbolic PathFinder: Symbolic Exe-
cution of Java Bytecode. In Proceedings of the IEEE/ACM International Conference
on Automated Software Engineering (Antwerp, Belgium) (ASE ’10). Association
for Computing Machinery, New York, NY, USA, 179–180.

[34] Christoph Schulze and Rance Cleaveland. 2017. Improving Invariant Mining
via Static Analysis. ACM Trans. Embed. Comput. Syst 16, 167 (2017). https:
//doi.org/10.1145/3126504

[35] Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song. 2018.
Learning Loop Invariants for Program Verification. In Proceedings of the 32nd In-
ternational Conference on Neural Information Processing Systems (NIPS’18). Curran
Associates Inc., Red Hook, NY, USA, 7762–7773.

[36] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay
Saraswat. 2006. Combinatorial sketching for finite programs. International
Conference on Architectural Support for Programming Languages and Operating
Systems - ASPLOS (2006), 404–415. https://doi.org/10.1145/1168857.1168907

[37] Saurabh Srivastava and Sumit Gulwani. 2009. Program verification using tem-
plates over predicate abstraction. Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI) (2009), 223–234.
https://doi.org/10.1145/1542476.1542501

[38] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. 2013. Template-based
program verification and program synthesis. International Journal on Software
Tools for Technology Transfer 15, 5-6 (oct 2013), 497–518. https://doi.org/10.1007/
S10009-012-0223-4

[39] David Trabish, Shachar Itzhaky, and Noam Rinetzky. 2021. A bounded symbolic-
size model for symbolic execution. ESEC/FSE 2021 - Proceedings of the 29th ACM
Joint Meeting European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (aug 2021), 1190–1201. https://doi.org/10.
1145/3468264.3468596

[40] Peng Tu and David Padua. 1995. Efficient Building and Placing of Gating
Functions. In Proceedings of the ACM SIGPLAN 1995 Conference on Program-
ming Language Design and Implementation (La Jolla, California, USA) (PLDI
’95). Association for Computing Machinery, New York, NY, USA, 47–55. https:
//doi.org/10.1145/207110.207115

[41] Michael Whalen, Darren Cofer, Steven Miller, Bruce H Krogh, and Walter Storm.
2007. Integration of Formal Analysis into a Model-Based Software Development
Process. In Proceedings of the 12th International Conference on Formal Methods
for Industrial Critical Systems (FMICS’07). Springer-Verlag, Berlin, Heidelberg,

https://github.com/sohah/ContractDR
https://github.com/sohah/ContractDR
https://github.com/SymbolicPathFinder/jpf-symbc
https://github.com/SymbolicPathFinder/jpf-symbc
http://www-verimag.imag.fr/The-Lustre-Programming-Language-and
http://www-verimag.imag.fr/The-Lustre-Programming-Language-and
https://rise4fun.com/z3/tutorial
https://doi.org/10.1007/978-3-642-16612-9_1
https://arxiv.org/abs/1308.4113
https://arxiv.org/abs/1308.4113v1
https://arxiv.org/abs/1308.4113v1
https://doi.org/10.1109/HCMDSS-MDPNP.2007.36
https://doi.org/10.1109/HCMDSS-MDPNP.2007.36
https://doi.org/10.1109/ASE.2000.873653
http://arxiv.org/abs/1611.07803
https://compsec.comp.nus.edu.sg/papers/ICSE13-SEMFIX.pdf
https://compsec.comp.nus.edu.sg/papers/ICSE13-SEMFIX.pdf
https://plse.cs.washington.edu/daikon/download/doc/daikon.pdf
https://doi.org/10.1016/J.SCICO.2007.01.015
https://doi.org/10.1007/978-3-319-96142-2_3
https://doi.org/10.1145/2837614.2837664
https://doi.org/10.1145/2001420.2001424
https://doi.org/10.1145/2001420.2001424
https://doi.org/10.1145/3236024.3264600
https://github.com/vaibhavbsharma/java-ranger
https://github.com/vaibhavbsharma/java-ranger
https://doi.org/10.1007/11513988_23
https://doi.org/10.1145/3106237.3106240
https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1109/MEMCOD.2011.5970509
https://doi.org/10.1109/MEMCOD.2011.5970509
https://doi.org/10.1145/2786805.2786811
https://doi.org/10.1145/2786805.2786811
https://doi.org/10.1109/ICSE.2019.00106
https://doi.org/10.1109/ICSE.2019.00106
https://doi.org/10.1145/2931037.2948705
https://doi.org/10.1145/2931037.2948705
https://doi.org/10.1145/3180155.3180247
https://doi.org/10.1145/2527269.2527272
https://doi.org/10.1145/2556782
https://doi.org/10.1145/2556782
https://doi.org/10.1145/3106237.3106281
https://doi.org/10.1145/93542.93578
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1145/3126504
https://doi.org/10.1145/3126504
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/1542476.1542501
https://doi.org/10.1007/S10009-012-0223-4
https://doi.org/10.1007/S10009-012-0223-4
https://doi.org/10.1145/3468264.3468596
https://doi.org/10.1145/3468264.3468596
https://doi.org/10.1145/207110.207115
https://doi.org/10.1145/207110.207115

FormaliSE’22, May 2022, Pittsburgh, PA, USA Soha Hussein, Sanjai Rayadurgam, Stephen McCamant, Vaibhav Sharma, and Mats Heimdahl

68–84.
[42] Michael W. Whalen, Andrew Gacek, Darren Cofer, Anitha Murugesan, Mats P.E.

Heimdahl, and Sanjai Rayadurgam. 2013. Your ’what’ is my ’how’: Iteration
and hierarchy in system design. IEEE Software 30, 2 (2013), 54–60. https:
//doi.org/10.1109/MS.2012.173

[43] Lingming Zhang, Guowei Yang, Neha Rungta, Suzette Person, and Sarfraz Khur-
shid. 2014. Feedback-driven dynamic invariant discovery. 2014 International
Symposium on Software Testing and Analysis, ISSTA 2014 - Proceedings (jul 2014),
362–372. https://doi.org/10.1145/2610384.2610389

View publication stats

https://doi.org/10.1109/MS.2012.173
https://doi.org/10.1109/MS.2012.173
https://doi.org/10.1145/2610384.2610389
https://www.researchgate.net/publication/362181650

	Abstract
	1 Introduction
	2 Motivating Example
	3 Related Work
	4 General-Purpose Repair Algorithm
	4.1 Safety Properties of Dataflow Programs

	5 Repairing Reactive Contracts
	5.1 Setup
	5.2 Repair Process

	6 Evaluation
	7 Conclusion and Future Work
	Acknowledgments
	References

